Energetic Potential Assessment of Wind-Driven Waves on the South-Southeastern Brazilian Shelf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Model
2.2. Boundary Conditions and Computational Grid
2.3. Validation
3. Results and Discussion
3.1. Temporal Mean Analysis
3.2. Local Wave Power Analysis
3.3. Temporal Variability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANP | Agência Nacional do Petróleo |
CAPES | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
CESUP-UFRGS | Supercomputing Center of the Federal University of Rio Grande do Sul |
CNPq | Conselho Nacional de Desenvolvimento Científico e Tecnológico |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EDF | Électricité de France |
ENSO | El Niño Southern Oscillation |
FAPERGS | Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul |
LNCC | Laboratório Nacional de Computação Científica |
NOAA | National Oceanic and Atmospheric Administration |
NCEP | National Centers for Environmental Prediction |
NCAR | National Center for Atmospheric Research |
PNBOIA | Programa Nacional de Boias |
PRH | Programa de Recursos Humanos |
RMSE | Root Mean Square Error |
SI | Scatter Index |
SSBS | South-Southeastern Brazilian Shelf |
Tomawac | Telemac-Based Operational Model Addressing Wave Action Computation |
WAM | WAve Model |
References
- Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S.; et al. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [Google Scholar] [CrossRef]
- López, I.; Andreu, J.; Ceballos, S.; Alegría, I.M.D.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Jama, M.A.; Noura, H.; Wahyudie, A.; Assi, A. Enhancing the performance of heaving wave energy converters using model-free control approach. Renew. Energy 2015, 83, 931–941. [Google Scholar] [CrossRef]
- Buccino, M.; Stagonas, D.; Vicinanza, D. Development of a composite sea wall wave energy converter system. Renew. Energy 2015, 81, 509–522. [Google Scholar] [CrossRef]
- Bódai, T.; Srinil, N. Performance analysis and optimization of a box-hull wave energy converter concept. Renew. Energy 2015, 81, 551–565. [Google Scholar] [CrossRef]
- Gaspar, J.F.; Calvário, M.; Kamarlouei, M.; Guedes Soares, C. Power take-off concept for wave energy converters based on oil-hydraulic transformer units. Renew. Energy 2016, 86, 1232–1246. [Google Scholar] [CrossRef]
- Rusu, E. Evaluation of the wave energy conversion efficiency in various coastal environments. Energies 2014, 7, 4002–4018. [Google Scholar] [CrossRef]
- Carballo, R.; Sánchez, M.; Ramos, V.; Fraguela, J.A.; Iglesias, G. Intra-annual wave resource characterization for energy exploitation: A new decision-aid tool. Energy Convers. Manag. 2015, 93, 1–8. [Google Scholar] [CrossRef]
- Robertson, B.; Hiles, C.; Luczko, E.; Buckham, B. Quantifying wave power and wave energy converter array production potential. Int. J. Mar. Energy 2016, 14, 143–160. [Google Scholar] [CrossRef]
- Cahill, B.G.; Lewis, T. Wave energy resource characterisation of the Atlantic Marine Energy Test Site. Int. J. Mar. Energy 2013, 1, 3–15. [Google Scholar] [CrossRef]
- Kim, J.; Kweon, H.M.; Jeong, W.M.; Cho, I.H.; Cho, H.Y. Design of the dual-buoy wave energy converter based on actual wave data of east sea. Int. J. Naval Archit. Ocean Eng. 2015, 7, 739–749. [Google Scholar] [CrossRef]
- Yaakob, O.; Hashim, F.E.; Mohd Omar, K.; Md Din, A.H.; Koh, K.K. Satellite-based wave data and wave energy resource assessment for South China Sea. Renew. Energy 2016, 88, 359–371. [Google Scholar] [CrossRef]
- Isaacs, J.D.; Seymour, R.J. The Ocean as a Power Resource. Int. J. Environ. Stud. 1973, 4, 201–205. [Google Scholar] [CrossRef]
- Krogstad, H.E.; Barstow, S.F. Satellite wave measurements for coastal engineering applications. Coast. Eng. 1999, 37, 283–307. [Google Scholar] [CrossRef]
- Arinaga, R.A.; Cheung, K.F. Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renew. Energy 2012, 39, 49–64. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Gunn, K.; Stock-Williams, C. Quantifying the global wave power resource. Renew. Energy 2012, 44, 296–304. [Google Scholar] [CrossRef]
- Neill, S.P.; Hashemi, M.R. Wave power variability over the northwest European shelf seas. Appl. Energy 2013, 106, 31–46. [Google Scholar] [CrossRef]
- Stopa, J.E.; Cheung, K.F.; Chen, Y.l. Assessment of wave energy resources in Hawaii. Renew. Energy 2011, 36, 554–567. [Google Scholar] [CrossRef]
- Iglesias, G.; Carballo, R. Wave resource in El Hierro-an island towards energy self-sufficiency. Renew. Energy 2011, 36, 689–698. [Google Scholar] [CrossRef]
- Liang, B.; Fan, F.; Yin, Z.; Shi, H.; Lee, D. Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China. Renew. Energy 2013, 57, 330–338. [Google Scholar] [CrossRef]
- Hiles, C.E.; Buckham, B.J.; Wild, P.; Robertson, B. Wave energy resources near Hot Springs Cove, Canada. Renew. Energy 2014, 71, 598–608. [Google Scholar] [CrossRef]
- Robertson, B.R.D.; Hiles, C.E.; Buckham, B.J. Characterizing the near shore wave energy resource on the west coast of Vancouver Island, Canada. Renew. Energy 2014, 71, 665–678. [Google Scholar] [CrossRef]
- Hemer, M.A.; Griffin, D.A. The wave energy resource along Australia’s Southern margin. J. Renew. Sustain. Energy 2010, 2, 1–15. [Google Scholar] [CrossRef]
- Behrens, S.; Hayward, J.; Hemer, M.; Osman, P. Assessing the wave energy converter potential for Australian coastal regions. Renew. Energy 2012, 43, 210–217. [Google Scholar] [CrossRef]
- Pianca, C.; Mazzini, P.L.F.; Siegle, E. Brazilian offshore wave climate based on NWW3 reanalysis. Braz. J. Oceanogr. 2010, 58, 53–70. [Google Scholar] [CrossRef]
- Parise, C.K.; Farina, L. Ocean wave modes in the South Atlantic by a short-scale simulation. Tellus A 2012, 64, 1–14. [Google Scholar] [CrossRef]
- Losada, I.J.; Reguero, B.G.; Méndez, F.J.; Castanedo, S.; Abascal, A.J.; Mínguez, R. Long-term changes in sea-level components in Latin America and the Caribbean. Glob. Planet. Chang. 2013, 104, 34–50. [Google Scholar] [CrossRef]
- Guimarães, P.V.; Farina, L.; Toldo, E.E., Jr. Analysis of extreme wave events on the southern coast of Brazil. Nat. Hazards Earth Syst. Sci. 2014, 14, 3195–3205. [Google Scholar] [CrossRef]
- Guimarães, P.V.; Farina, L.; Toldo, E.E., Jr.; Diaz-Hernandez, G.; Akhmatskaya, E. Numerical simulation of extreme wave runup during storm events in Tramandaí Beach, Rio Grande do Sul, Brazil. Coast. Eng. 2015, 95, 171–180. [Google Scholar] [CrossRef]
- Cuchiara, D.; Fernandes, E.; Strauch, J.; Winterwerp, J.; Calliari, L. Determination of the wave climate for the southern Brazilian shelf. Cont. Shelf Res. 2009, 29, 545–555. [Google Scholar] [CrossRef]
- Parente, C.E.; Nogueira, I.C.M.; Martins, R.P.; Ribeiro, E.O. Climatologia de Ondas. In Caracterização Ambiental Regional da Bacia de Campos, Atlântico Sudoeste: Meteorologia e Oceanografia. Habitats, 1st ed.; Martins, R.P., Santiago Grossmann-Matheson, G., Eds.; Elsevier: Rio de Janeiro, Brazil, 2015; Chapter 2; pp. 55–98. [Google Scholar]
- Green, D.A. A colour scheme for the display of astronomical intensity images. Bull. Astron. Soc. India 2011, 39, 289–295. [Google Scholar]
- Tolman, H.L. A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents. J. Phys. Oceanogr. 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and mOdelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994; p. 532. [Google Scholar]
- Awk, T. Tomawac User Manual Version 7.2, Technical Report; The TELEMAC-Mascaret Consortium, Version 7.2.3. 2017.
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III Version 1.15; Technical Report; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1997.
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III Version 1.18; Technical Report; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1999.
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III Version 3.14; Technical Report; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2009.
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M.; Hansen, B.; Bidlot, J.R. Verification of the ECMWF Wave Forecasting System against Buoy and Altimeter Data. Am. Meteorol. Soc. 1997, 12, 763–784. [Google Scholar] [CrossRef]
- Lalbeharry, R. Evaluation of the CMC regional wave forecasting system against buoy data. Atmos. Ocean 2002, 40, 1–20. [Google Scholar] [CrossRef]
- Melo, E.; Hammes, G.R.; Franco, D.; Romeu, M.A.R. Avaliação de desempenho do modelo WW3 em Santa Catarina. In Proceedings of the Anais do III SEMENGO: Seminário e Workshop em Engenharia Oceânica, Rio Grande, Brazil, 2008. [Google Scholar]
- Melo, E.; Romeu, M.; Hammes, G. Condições extremas de agitação marítima ao largo de Rio Grande a partir do modelo WW3. In Proceedings of the Anais do IV Seminário e Workshop em Engenharia Oceânica, Rio Grande, Brazil, 2010; pp. 1–20. [Google Scholar]
- Chawla, A.; Spindler, D.M.; Tolman, H.L. Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Model. 2013, 70, 189–206. [Google Scholar] [CrossRef]
- Edwards, E.; Cradden, L.; Ingram, D.; Kalogeri, C. Verification within wave resource assessments. Part 1: Statistical analysis. Int. J. Mar. Energy 2014, 8, 50–69. [Google Scholar] [CrossRef]
- Dos Santos, R.B. Estudo Do Potencial Energético de Ondas Geradas pelo Vento para a Plataforma Continental sul do Brasil. Ph.D. Thesis, Universidade Federal do Rio Grande, Porto Alegre, Brazil, 2009. [Google Scholar]
- Iuppa, C.; Cavallaro, L.; Vicinanza, D.; Foti, E. Investigation of suitable sites for wave energy converters around Sicily (Italy). Ocean Sci. 2015, 11, 543–557. [Google Scholar] [CrossRef]
- Cavaleri, L. Wave Modeling—Missing the Peaks. Mar. Sci. 2009, 39, 2757–2778. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.C. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, X.S.; Weisberg, R.H. Rectification of the bias in the wavelet power spectrum. J. Atmos. Ocean. Technol. 2007, 24, 2093–2102. [Google Scholar] [CrossRef]
- Martins, L.R.; Coutinho, P.N. The Brazilian continental margin. Earth-Sci. Rev. 1981, 17, 87–107. [Google Scholar] [CrossRef]
- Garcia-Herrera, R.; Barriopedro, D.; Hernández, E.; Diaz, H.F.; Garcia, R.R.; Prieto, M.R.; Moyano, R. A Chronology of El Niño Events from Primary Documentary Sources in Northern Peru. J. Clim. 2008, 21, 1948–1962. [Google Scholar] [CrossRef]
- Xu, K.M.; Wong, T.; Wielicki, B.A.; Parker, L. Statistical Analyses of Satellite Cloud Object Data from CERES. Part IV: Boundary Layer Cloud Objects 1998 El Niño. J. Clim. 2008, 21, 6668–6688. [Google Scholar] [CrossRef]
- Marques, W.; Fernandes, E.; Monteiro, I.; Möller, O. Numerical modeling of the Patos Lagoon coastal plume, Brazil. Cont. Shelf Res. 2009, 29, 556–571. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.L.; Moraes, B.C.; Möller, O.O.; Malcherek, A. Dynamics of the Patos Lagoon coastal plume and its contribution to the deposition pattern of the southern Brazilian inner shelf. J. Geophys. Res. Oceans 2010, 115, C10045. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.L.; Moller, O.O. Straining and advection contributions to the mixing process of the Patos Lagoon coastal plume, Brazil. J. Geophys. Res. 2010, 115, C06019. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.L.; Rocha, L.A.O. Straining and advection contributions to the mixing process in the Patos Lagoon estuary, Brazil. J. Geophys. Res. 2011, 116, C03016. [Google Scholar] [CrossRef]
- McPhaden, M.J. Evolution of the 2002/03 El Niño. Bull. Am. Meteorol. Soc. 2004, 85, 677–695. [Google Scholar] [CrossRef]
- Goddard, L.; Kumar, A.; Hoerling, P.P.; Barnston, A.G. Diagnosis of Anomalous Winter Temperatures over the Eastern United States during the 2002 / 03 El Niño. J. Clim. 2006, 19, 5624–5636. [Google Scholar] [CrossRef]
- Okumura, Y.M.; Deser, C. Asymmetry in the Duration of El Niño and La Niña. J. Clim. 2010, 23, 5826–5843. [Google Scholar] [CrossRef]
- Robinson, C.J.; Gómez-Gutiérrez, J.; Markaida, U.; Gilly, W.F. Prolonged decline of jumbo squid (Dosidicus gigas) landings in the Gulf of California is associated with chronically low wind stress and decreased chlorophyll a after El Niño 2009–2010. Fish. Res. 2015, 173, 128–138. [Google Scholar] [CrossRef]
- Busalacchi, A.J.; Picaut, J. Seasonal Variability from a Model of the Tropical Atlantic Ocean. J. Phys. Oceanogr. 1983, 13, 1564–1588. [Google Scholar] [CrossRef]
- Gan, M.A.; Rao, V.B. Surface Cyclogenesis over South America. Mon. Weather Rev. 1991, 119, 1293–1302. [Google Scholar] [CrossRef]
- Venegas, S.A.; Mysak, L.A.; Straub, D.N. Atmosphere-ocean coupled variability in the south atlantic. J. Clim. 1997, 10, 2904–2920. [Google Scholar] [CrossRef]
- Liebmann, B.; Kiladis, G.N.; Marengo, J.A.; Ambrizzi, T.; Glick, J.D. Submonthly convective variability over South America and the South Atlantic convergence zone. J. Clim. 1999, 12, 1877–1891. [Google Scholar] [CrossRef]
1. | |
2. | |
3. | |
4. |
Root Mean Square Error | |
Scatter Index | |
Correlation Coefficient |
Parameter | Rio Grande Do Sul | Santa Catarina | São Paulo | ||||
---|---|---|---|---|---|---|---|
B | T | B | T | B | T | ||
Hs | Average [] | 2,06 | 1,80 | 1,94 | 1,77 | 2,01 | 1,81 |
Root Mean Square Error [] | 0,58 | 0,50 | 0,61 | ||||
Correlation Coefficient | 0,91 | 0,89 | 0,91 | ||||
Scatter Index | 0,28 | 0,26 | 0,30 | ||||
Tp | Average [] | 9,51 | 8,63 | 9,82 | 9,11 | 9,77 | 8,79 |
Root Mean Square Error [] | 2,07 | 2,00 | 2,10 | ||||
Correlation Coefficient | 0,93 | 0,92 | 0,93 | ||||
Scatter Index | 0,22 | 0,20 | 0,22 |
Laguna | Ilhabela | Farol Island | |
---|---|---|---|
Mean [] | 9,08 | 10,01 | 15,93 |
Standard Deviation [] | 6,47 | 7,59 | 13,51 |
Maximum [] | 79,88 | 112,13 | 140,70 |
Integrated [] | 119,36 | 131,66 | 209,50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleinik, P.H.; Kirinus, E.d.P.; Fragassa, C.; Marques, W.C.; Costi, J. Energetic Potential Assessment of Wind-Driven Waves on the South-Southeastern Brazilian Shelf. J. Mar. Sci. Eng. 2019, 7, 25. https://doi.org/10.3390/jmse7020025
Oleinik PH, Kirinus EdP, Fragassa C, Marques WC, Costi J. Energetic Potential Assessment of Wind-Driven Waves on the South-Southeastern Brazilian Shelf. Journal of Marine Science and Engineering. 2019; 7(2):25. https://doi.org/10.3390/jmse7020025
Chicago/Turabian StyleOleinik, Phelype Haron, Eduardo de Paula Kirinus, Cristiano Fragassa, Wiliam Correa Marques, and Juliana Costi. 2019. "Energetic Potential Assessment of Wind-Driven Waves on the South-Southeastern Brazilian Shelf" Journal of Marine Science and Engineering 7, no. 2: 25. https://doi.org/10.3390/jmse7020025
APA StyleOleinik, P. H., Kirinus, E. d. P., Fragassa, C., Marques, W. C., & Costi, J. (2019). Energetic Potential Assessment of Wind-Driven Waves on the South-Southeastern Brazilian Shelf. Journal of Marine Science and Engineering, 7(2), 25. https://doi.org/10.3390/jmse7020025