Mapping Heavy Metal Concentrations in Beach Sands Using GIS and Portable XRF Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Area and Sand Sampling
2.2. Geostatistical Spatial Interpolation
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Di Lauro, A.; Fernex, F.; Fierro, G.; Ferrand, J.L.; Pupin, J.P.; Gasparro, J. Geochemical approach to the sedimentary evolution of the Bay of Nice (NW Mediterranean sea). Cont. Shelf Res. 2004, 24, 223–239. [Google Scholar] [CrossRef]
- Pezzuto, P.R.; Resgalla, C., Jr.; Abreu, J.G.N.; Menezes, J.T. Environmental impacts of the nourishment of Balneário Camboriú beach, SC, Brazil. J. Coast. Res. 2006, SI39, 863–868. [Google Scholar]
- Petroleum Management Service. Available online: http://www.joongboo.com/news/articleView.html?idxno=1176307 (accessed on 15 May 2017).
- Park, D.; Choi, H.; Yoon, I.; Kim, Y.; Lee, K.; Choi, C.; Park, J. Heavy metal survey of white sandy beaches in east coast beach. J. GBIHE 2016, 29, 317–323. [Google Scholar]
- Jensen, J.R.; Narumalani, S.; Weatherbee, O.; Murday, M.; Sexton, W.J.; Green, C.J. Coastal environmental sensitivity mapping for oil spills in the United Arab Emirates using remote sensing and GIS technology. Geocarto Int. 1993, 8, 5–13. [Google Scholar] [CrossRef]
- Nobi, E.P.; Dilipan, E.; Thangaradjou, T.; Sivakumar, K.; Kannan, L. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar. Coast Shelf Sci. 2010, 87, 253–264. [Google Scholar] [CrossRef]
- Ip, C.C.; Li, X.D.; Zhang, G.; Wai, O.W.; Li, Y.S. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ. Pollut. 2007, 147, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Higueras, P.; Oyarzun, R.; Iraizoz, J.M.; Lorenzo, S.; Esbri, J.M.; Martinez-Coronado, A. Low-cost geochemical surveys for environmental studies in developing countries: Testing a field portable XRF instrument under quasi-realistic conditions. J. Geochem. Explor. 2012, 113, 3–12. [Google Scholar] [CrossRef]
- Kalnicky, D.J.; Singhvi, R. Field portable XRF analysis of environmental samples. J. Hazard. Mater. 2001, 83, 93–122. [Google Scholar] [CrossRef]
- Lee, H.; Choi, Y. A Study on the soil contamination maps using the handheld XRF and GIS in abandoned mining areas. J. Korean Assoc. Geogr. Inf. Stud. 2014, 17, 195–206. [Google Scholar] [CrossRef]
- Hu, Y.S. Disappearing sandy beaches on the Eastern Coast. J. Korean Soc. Civil. Eng. 2017, 65, 36–37. [Google Scholar]
- Tolner, M.; Vaszita, E.; Gruiz, K. On-Site Screening and Monitoring of Pollution by a Field-Portable X-Ray Fluorescence Measuring Device. In Proceedings of the Consoil 2010 Conference, Salzburg, Austria, 22–24 September 2010. [Google Scholar]
- Kim, S.M.; Choi, Y. Assessing statistically significant heavy-metal concentrations in abandoned mine areas via Hot Spot Analysis of portable XRF data. Int. J. Environ. Res. Public Health 2017, 14, 654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J. Encyclopedia of Environmental Health; Elsevier: London, UK, 2011; pp. 1–80. [Google Scholar]
- Hou, X.; He, Y.; Jones, B.T. Recent advances in portable X-ray fluorescence spectrometry. Appl. Spectrosc. Rev. 2004, 39, 1–25. [Google Scholar] [CrossRef]
- Spiers, G.A.; Dudas, M.J.; Hodgins, L.W. Instrumental conditions and procedure for multielement analysis of soils and plant tissue by ICP-AES. Commun. Soil Sci. Plant. Anal. 1983, 14, 629–644. [Google Scholar] [CrossRef]
- Steiger, B.; Webster, R.; Schulin, R.; Lehmann, R. Mapping heavy metals in polluted soil by disjunctive kriging. Environ. Pollut. 1996, 94, 205–215. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Li, X.; Lee, S.; Wong, S.; Shi, W.; Thornton, I. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ. Pollut. 2004, 129, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.; Lee, H.; Choi, Y. A rapid, accurate, and efficient method to map heavy metal-contaminated soils of abandoned mine sites using converted portable XRF data and GIS. Int. J. Environ. Res. Public Health 2016, 13, 1191. [Google Scholar] [CrossRef]
- Lee, H.; Choi, Y.; Suh, J.; Lee, S.H. Mapping copper and lead concentrations at abandoned mine areas using element analysis data from ICP–AES and portable XRF instruments: A comparative study. Int. J. Environ. Res. Public Health 2016, 13, 384. [Google Scholar] [CrossRef]
- Yi, H.; Choi, Y.; Park, H.D. Application of multiple indicator Kriging for RMR value estimation in areas of new drift excavation during mine site redevelopment. Environ. Earth Sci. 2014, 71, 4379–4386. [Google Scholar] [CrossRef]
- Kim, S.M.; Choi, Y.; Park, H.D. New outlier top-cut method for mineral resource estimation via 3D hot spot analysis of Borehole data. Minerals 2018, 8, 348. [Google Scholar] [CrossRef]
- Ministry of Government Legislation. Soil Environment Conservation Act; Ministry of Government Legislation: Sejong, Korea, 2011.
- Ministry of Environment Republic of Korea. Environmental Statistics Yearbook; Ministry of Environment Republic of Korea: Sejong, Korea, 2003.
- Abzalov, M. Applied Mining Geology; Springer: Berlin, Germany, 2016. [Google Scholar]
Sample ID | Pb (mg/kg) | Zn (mg/kg) | Sample ID | Pb (mg/kg) | Zn (mg/kg) |
---|---|---|---|---|---|
1 | N.D. | 30 | 35 | 44 | 149 |
2 | N.D. | 29 | 36 | N.D. | 48 |
3 | N.D. | 46 | 37 | N.D. | N.D. |
4 | N.D. | 24 | 38 | N.D. | N.D. |
5 | N.D. | 27 | 39 | N.D. | 46 |
6 | N.D. | 40 | 40 | 24 | 52 |
7 | N.D. | N.D. | 41 | 47 | 89 |
8 | N.D. | N.D. | 42 | N.D. | 42 |
9 | N.D. | 38 | 43 | 23 | 40 |
10 | 28 | N.D. | 44 | N.D. | 42 |
11 | N.D. | 34 | 45 | N.D. | 34 |
12 | N.D. | 44 | 46 | 31 | 80 |
13 | 58 | 113 | 47 | N.D. | 27 |
14 | N.D. | N.D. | 48 | 22 | 35 |
15 | N.D. | N.D. | 49 | 37 | 36 |
16 | 28 | 54 | 50 | N.D. | 44 |
17 | N.D. | 31 | 51 | 30 | N.D. |
18 | N.D. | 38 | 52 | N.D. | 42 |
19 | N.D. | 42 | 53 | N.D. | 38 |
20 | N.D. | 28 | 54 | N.D. | 58 |
21 | N.D. | 39 | 55 | N.D. | 50 |
22 | N.D. | 34 | 56 | N.D. | 30 |
23 | N.D. | N.D. | 57 | N.D. | 29 |
24 | N.D. | 34 | 58 | 21 | 38 |
25 | N.D. | 41 | 59 | 26 | 137 |
26 | 29 | 47 | 60 | N.D. | 41 |
27 | 26 | 46 | 61 | N.D. | N.D. |
28 | N.D. | 39 | 62 | N.D. | 38 |
29 | N.D. | 38 | 63 | 25 | N.D. |
30 | 30 | 36 | 64 | N.D. | 32 |
31 | 26 | 61 | 65 | 25 | 53 |
32 | N.D. | 30 | 66 | N.D. | 65 |
33 | N.D. | N.D. | 67 | N.D. | 67 |
34 | N.D. | 39 | 68 | N.D. | 32 |
Limit of detection (mg/kg) | 5 | 15 | Mean (mg/kg)2 | 10.33 | 39.79 |
Minimum (mg/kg)1 | 21 | 24 | Standard deviation (mg/kg) | 14.66 | 28.49 |
Maximum (mg/kg) | 58 | 149 | Skewness | 1.49 | 1.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-M.; Choi, Y. Mapping Heavy Metal Concentrations in Beach Sands Using GIS and Portable XRF Data. J. Mar. Sci. Eng. 2019, 7, 42. https://doi.org/10.3390/jmse7020042
Kim S-M, Choi Y. Mapping Heavy Metal Concentrations in Beach Sands Using GIS and Portable XRF Data. Journal of Marine Science and Engineering. 2019; 7(2):42. https://doi.org/10.3390/jmse7020042
Chicago/Turabian StyleKim, Sung-Min, and Yosoon Choi. 2019. "Mapping Heavy Metal Concentrations in Beach Sands Using GIS and Portable XRF Data" Journal of Marine Science and Engineering 7, no. 2: 42. https://doi.org/10.3390/jmse7020042
APA StyleKim, S. -M., & Choi, Y. (2019). Mapping Heavy Metal Concentrations in Beach Sands Using GIS and Portable XRF Data. Journal of Marine Science and Engineering, 7(2), 42. https://doi.org/10.3390/jmse7020042