Statistical Deviations in Shoreline Detection Obtained with Direct and Remote Observations
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sea Waves’ Analysis
3.2. Kinematic GPS Survey
3.3. Video Camera Observations
3.4. Validation Method
4. Results
4.1. Wave Climate Conditions
4.2. Comparison between Different Accuracies of GPS Solutions
4.3. Comparison between DGPS and Video Camera Coastline
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Girolamo, P.; Di Risio, M.; Romano, A.; Molfetta, M. Landslide tsunami: Physical modeling for the implementation of tsunami early warning systems in the Mediterranean Sea. Procedia Eng. 2014, 70, 429–438. [Google Scholar] [CrossRef]
- Samaras, A.; Karambas, T.V.; Archetti, R. Simulation of tsunami generation, propagation and coastal inundation in the Eastern Mediterranean. Ocean Sci. 2015, 11, 643–655. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Di Risio, M.; Bruschi, A.; Lisi, I.; Pesarino, V.; Pasquali, D. Comparative analysis of coastal flooding vulnerability and hazard assessment at national scale. J. Mar. Sci. Eng. 2017, 5, 51. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Bruno, M.F.; Molfetta, M.G.; Pratola, L.; Mossa, M.; Nutricato, R.; Morea, A.; Nitti, D.O.; Chiaradia, M.T. A Combined Approach of Field Data and Earth Observation for Coastal Risk Assessment. Sensors 2019, 19, 1399. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.F.; Molfetta, M.G.; Mossa, M.; Morea, A.; Chiaradia, M.T.; Nutricato, R.; Nitti, D.O.; Guerriero, L.; Coletta, A. Integration of multitemporal SAR/InSAR techniques and NWM for coastal structures monitoring: Outline of the software system and of an operational service with COSMO-SkyMed data. In Proceedings of the 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Bari, Italy, 13–14 June 2016; pp. 1–6. [Google Scholar]
- Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Valentini, N.; Saponieri, A.; Molfetta, M.G.; Damiani, L. New algorithms for shoreline monitoring from coastal video systems. Earth Sci. Inform. 2017, 10, 495–506. [Google Scholar] [CrossRef]
- Benassai, G.; Di Luccio, D.; Mucerino, L.; Paola, G.D.; Rosskopf, C.M.; Pugliano, G.; Robustelli, U.; Montella, R. Shoreline rotation analysis of embayed beaches in the Central Thyrrenian Sea. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018; pp. 7–12. [Google Scholar] [CrossRef]
- Guariglia, A.; Buonamassa, A.; Losurdo, A.; Saladino, R.; Trivigno, M.L.; Zaccagnino, A.; Colangelo, A. A multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys. 2006, 49, 295–304. [Google Scholar]
- Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 2007, 4, 61–66. [Google Scholar] [CrossRef]
- Nunziata, F.; Buono, A.; Migliaccio, M.; Benassai, G. Dual-polarimetric C-and X-band SAR data for coastline extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4921–4928. [Google Scholar] [CrossRef]
- Benassai, G.; Aucelli, P.; Budillon, G.; De Stefano, M.; Di Luccio, D.; Di Paola, G.; Montella, R.; Mucerino, L.; Sica, M.; Pennetta, M. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation. Nat. Hazards Earth Syst. Sci. 2017, 17, 1493–1503. [Google Scholar] [CrossRef]
- Brignone, M.; Schiaffino, C.F.; Isla, F.I.; Ferrari, M. A system for beach video-monitoring: Beachkeeper plus. Comput. Geosci. 2012, 49, 53–61. [Google Scholar] [CrossRef]
- Di Luccio, D.; Benassai, G.; Budillon, G.; Mucerino, L.; Montella, R.; Pugliese Carratelli, E. Wave run-up prediction and observation in a micro-tidal beach. Nat. Hazards Earth Syst. Sci. 2018, 18, 2841–2857. [Google Scholar] [CrossRef]
- Aarninkhof, S.G.J. Nearshore Bathymetry Derived From Video Imagery. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2003. [Google Scholar]
- Turner, I.L.; Aarninkhof, S.; Dronkers, T.; McGrath, J. CZM applications of Argus coastal imaging at the Gold Coast, Australia. J. Coast. Res. 2004, 20, 739–752. [Google Scholar] [CrossRef]
- Montuori, A.; Ricchi, A.; Benassai, G.; Migliaccio, M. Sea wave numerical simulation and verification in Tyrrhenian costal area with X-band cosmo-skymed SAR data. In Proceedings of the ESA, SOLAS & EGU Joint Conference Earth Observation for Ocean-Atmosphere Interactions Science, Frascati, Italy, 29 November–2 December 2011; Volume 29. [Google Scholar]
- Benassai, G.; Montuori, A.; Migliaccio, M.; Nunziata, F. Sea wave modeling with X-band COSMO-SkyMed© SAR-derived wind field forcing and applications in coastal vulnerability assessment. Ocean Sci. 2013, 9, 325–341. [Google Scholar] [CrossRef]
- Benassai, G.; Migliaccio, M.; Montuori, A.; Ricchi, A. Wave simulations through SAR COSMO-SkyMed wind retrieval and verification with buoy data. In Proceedings of the Twenty-Second International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, Rhodes, Greece, 17–22 June 2012. [Google Scholar]
- Dominici, D.; Zollini, S.; Alicandro, M.; Della Torre, F.; Buscema, P.M.; Baiocchi, V. High Resolution Satellite Images for Instantaneous Shoreline Extraction Using New Enhancement Algorithms. Geosciences 2019, 9, 123. [Google Scholar] [CrossRef]
- Palazzo, F.; Latini, D.; Baiocchi, V.; Del Frate, F.; Giannone, F.; Dominici, D.; Remondiere, S. An application of COSMO-Sky Med to coastal erosion studies. Eur. J. Remote Sens. 2012, 45, 361–370. [Google Scholar] [CrossRef]
- Benassai, G.; Di Luccio, D.; Corcione, V.; Nunziata, F.; Migliaccio, M. Marine Spatial Planning Using High-Resolution Synthetic Aperture Radar Measurements. IEEE J. Ocean. Eng. 2018, 43, 586–594. [Google Scholar] [CrossRef]
- Di Tullio, G.R.; Mariani, P.; Benassai, G.; Di Luccio, D.; Grieco, L. Sustainable use of marine resources through offshore wind and mussel farm co-location. Ecol. Model. 2018, 367, 34–41. [Google Scholar] [CrossRef]
- Benassai, G.; Di Luccio, D.; Migliaccio, M.; Cordone, V.; Budillon, G.; Montella, R. High resolution remote sensing data for environmental modeling: Some case studies. In Proceedings of the 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy, 11–13 September 2017; pp. 1–5. [Google Scholar]
- Nunziata, F.; Buono, A.; Migliaccio, M.; Benassai, G.; Di Luccio, D. Shoreline erosion of microtidal beaches examined with UAV and remote sensing techniques. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018; pp. 162–166. [Google Scholar] [CrossRef]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Rosskopf, C.; Mucerino, L.; Montella, R.; Contestabile, P. Monitoring and modeling coastal vulnerability and mitigation proposal for an archaeological site (Kaulonia, Southern Italy). Sustainability 2018, 10, 2017. [Google Scholar] [CrossRef]
- Mucerino, L.; Albarella, M.; Carpi, L.; Besio, G.; Benedetti, A.; Corradi, N.; Firpo, M.; Ferrari, M. Coastal exposure assessment on Bonassola bay. Ocean Coast. Manag. 2019, 167, 20–31. [Google Scholar] [CrossRef]
- Schiaffino, C.F.; Dessy, C.; Corradi, N.; Fierro, G.; Ferrari, M. Morphodynamics of a gravel beach protected by a detached low-crested breakwater. The case of Levanto (eastern Ligurian Sea, Italy). Ital. J. Eng. Geol. Environ. 2015, 15, 31–39. [Google Scholar]
- Lisi, I.; Molfetta, M.; Bruno, M.; Di Risio, M.; Damiani, L. Morphodynamic classification of sandy beaches in enclosed basins: The case study of Alimini (Italy). J. Coast. Res. 2011, 180–184. [Google Scholar]
- Postacchini, M.L.L.C.; Mancinelli, A. Medium-term dynamics of a middle Adriatic barred beach. Ocean Sci. 2017, 3, 719. [Google Scholar] [CrossRef]
- Plant, N.G.; Holman, R.A. Intertidal beach profile estimation using video images. Mar. Geol. 1997, 140, 1–24. [Google Scholar] [CrossRef]
- Bryan, K.R.; Smith, R.; Ovenden, R. The Use of a Video Camera to Assess Beach Volume Change During 2001 at Tairua, New Zealand. In Coasts & Ports 2003 Australasian Conference, Proceedings of the 16th Australasian Coastal and Ocean Engineering Conference, the 9th Australasian Port and Harbour Conference and the Annual New Zealand Coastal Society Conference; Institution of Engineers: Canberra, Australia, 2003; p. 1236. [Google Scholar]
- Smith, R.; Bryan, K. Monitoring beach face volume with a combination of intermittent profiling and video imagery. J. Coast. Res. 2007, 23, 892–898. [Google Scholar] [CrossRef]
- Almar, R.; Ranasinghe, R.; Sénéchal, N.; Bonneton, P.; Roelvink, D.; Bryan, K.R.; Marieu, V.; Parisot, J.P. Video-based detection of shorelines at complex meso–macro tidal beaches. J. Coast. Res. 2012, 28, 1040–1048. [Google Scholar]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Mucerino, L.; Buono, A.; Rosskopf, C.M.; Nunziata, F.; Migliaccio, M.; Urciuoli, A.; Montella, R. Shoreline Rotation Analysis of Embayed Beaches by Means of In Situ and Remote Surveys. Sustainability 2019, 11, 725. [Google Scholar] [CrossRef]
- Slott, J.M.; Murray, A.B.; Ashton, A.D.; Crowley, T.J. Coastline responses to changing storm patterns. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bencivenga, M.; Nardone, G.; Ruggiero, F.; Calore, D. The Italian data buoy network (RON). Adv. Fluid Mech. IX 2012, 74, 321. [Google Scholar]
- Arena, F.; Pavone, D. Return period of nonlinear high wave crests. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef]
- Takasu, T. RTKLIB Ver. 2.4.2 Manual. Available online: http://www.rtklib.com/prog/manual_2.4.2.pdf (accessed on 23 November 2018).
- Pugliano, G.; Robustelli, U.; Rossi, F.; Santamaria, R. A new method for specular and diffuse pseudorange multipath error extraction using wavelet analysis. GPS Solut. 2016, 20, 499–508. [Google Scholar] [CrossRef]
- Robustelli, U.; Pugliano, G. GNSS code multipath short time fourier transform analysis. Navi 2018, 65, 353–362. [Google Scholar] [CrossRef]
- Robustelli, U.; Pugliano, G. Code multipath analysis of Galileo FOC satellites by time-frequency representation. Appl. Geomat. 2018, 11, 69–80. [Google Scholar] [CrossRef]
- Robustelli, U.; Baiocchi, V.; Pugliano, G. Assessment of Dual Frequency GNSS Observations from a Xiaomi Mi 8 Android Smartphone and Positioning Performance Analysis. Electronics 2019, 8, 91. [Google Scholar] [CrossRef]
- Holland, K.T.; Holman, R.A.; Lippmann, T.C.; Stanley, J.; Plant, N. Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Ocean. Eng. 1997, 22, 81–92. [Google Scholar] [CrossRef]
- Didier, D.; Bernatchez, P.; Augereau, E.; Caulet, C.; Dumont, D.; Bismuth, E.; Cormier, L.; Floc’h, F.; Delacourt, C. LiDAR validation of a video-derived beachface topography on a tidal flat. Remote Sens. 2017, 9, 826. [Google Scholar] [CrossRef]
- Stumpf, A.; Augereau, E.; Delacourt, C.; Bonnier, J. Photogrammetric discharge monitoring of small tropical mountain rivers: A case study at Rivière des Pluies, Réunion Island. Water Resour. Res. 2016, 52, 4550–4570. [Google Scholar] [CrossRef]
- Aarninkhof, S. Argus-based monitoring of intertidal beach morphodynamics. In Proceedings of the Coastal Sediments 99, Long Island, NY, USA, 21–23 June 1999. [Google Scholar]
- Alexander, P.S.; Holman, R.A. Quantification of nearshore morphology based on video imaging. Mar. Geol. 2004, 208, 101–111. [Google Scholar] [CrossRef]
- Davidson, M.; Aarninkhof, S.; Van Koningsveld, M.; Holman, R. Developing coastal video monitoring systems in support of coastal zone management. J. Coast. Res. 2006, I, 49–56. [Google Scholar]
- Holman, R.; Stanley, J.; Ozkan-Haller, T. Applying video sensor networks to nearshore environment monitoring. IEEE Pervasive Comput. 2003, 2, 14–21. [Google Scholar] [CrossRef]
- Piscopia, R.; Inghilesi, R.; Panizzo, A.; Corsini, S.; Franco, L. Analysis of 12-year wave measurements by the Italian Wave Network. In Coastal Engineering 2002: Solving Coastal Conundrums; World Scientific: Singapore, 2003; pp. 121–133. [Google Scholar]
- Cazenave, A.; Bonnefond, P.; Mercier, F.; Dominh, K.; Toumazou, V. Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Glob. Planet. Chang. 2002, 34, 59–86. [Google Scholar] [CrossRef]
Profile | Emerged Beach width L (m) | Berm Height (m) | Emerged Beach Slope (%) | Local Beach Slope (%) |
---|---|---|---|---|
T1 | 45.38 | 1.11 | 7.88 | 5.85 |
T2 | 61.21 | 1.29 | 3.19 | 15.02 |
T3 | 73.54 | 1.46 | 3.94 | 17.27 |
T4 | 86.79 | 1.37 | 1.48 | 17.87 |
T5 | 74.02 | 1.29 | 3.88 | 21.37 |
Storm Id | Hs max (m) | Tm (s) | Tp (s) | Dm (∘N) | Date and Hour (UTC) |
---|---|---|---|---|---|
1 | 7.10 | 8.7 | 12.5 | 266.0 | 28 December 1999 15:00 |
2 | 5.80 | 10.0 | 11.1 | 272.0 | 3 December 1997 15:00 |
3 | 5.70 | 10.5 | 12.5 | 271.0 | 28 February. 1990 03:00 |
4 | 5.70 | 7.5 | 10.0 | 262.0 | 6 December 1992 03:00 |
5 | 5.61 | 7.9 | 10.5 | 264.6 | 2 January 2010 06:00 |
6 | 5.60 | 9.4 | 11.1 | 272.0 | 20 December 1991 15:00 |
7 | 5.50 | 8.9 | 10.0 | 266.0 | 13 May 1995 21:00 |
8 | 5.50 | 8.7 | 10.0 | 275.0 | 21 November 1996 06:00 |
9 | 5.50 | 7.7 | 10.0 | 238.0 | 19 November 1999 09:00 |
10 | 5.35 | 7.4 | 8.7 | 256.8 | 4 March 2014 06:00 |
Distance (m) | Mean (m) | Max (m) | std (m) |
---|---|---|---|
0–200 | 1.62 | 3.37 | 0.97 |
200–500 | 1.08 | 1.69 | 0.29 |
500–1340 | 2.40 | 5.13 | 1.34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliano, G.; Robustelli, U.; Di Luccio, D.; Mucerino, L.; Benassai, G.; Montella, R. Statistical Deviations in Shoreline Detection Obtained with Direct and Remote Observations. J. Mar. Sci. Eng. 2019, 7, 137. https://doi.org/10.3390/jmse7050137
Pugliano G, Robustelli U, Di Luccio D, Mucerino L, Benassai G, Montella R. Statistical Deviations in Shoreline Detection Obtained with Direct and Remote Observations. Journal of Marine Science and Engineering. 2019; 7(5):137. https://doi.org/10.3390/jmse7050137
Chicago/Turabian StylePugliano, Giovanni, Umberto Robustelli, Diana Di Luccio, Luigi Mucerino, Guido Benassai, and Raffaele Montella. 2019. "Statistical Deviations in Shoreline Detection Obtained with Direct and Remote Observations" Journal of Marine Science and Engineering 7, no. 5: 137. https://doi.org/10.3390/jmse7050137
APA StylePugliano, G., Robustelli, U., Di Luccio, D., Mucerino, L., Benassai, G., & Montella, R. (2019). Statistical Deviations in Shoreline Detection Obtained with Direct and Remote Observations. Journal of Marine Science and Engineering, 7(5), 137. https://doi.org/10.3390/jmse7050137