Giant Submarine Landslide in the South China Sea: Evidence, Causes, and Implications
Abstract
:1. Introduction
2. Geological Setting
3. Evidence of the Baiyun–Liwan Submarine Slide
3.1. Shoreward Migration of the Shelf Break
3.2. Slump Deposition to the Southeast
3.3. Decrease in Accumulation Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korup, O.; Clague, J.J.; Hermanns, R.L.; Hewitt, K.; Strom, A.L.; Weidinger, J.T. Giant landslides, topography, and erosion. Earth Planet. Sci. Lett. 2007, 261, 578–589. [Google Scholar] [CrossRef]
- Korup, O. Earth’s portfolio of extreme sediment transport events. Earth Sci. Rev. 2012, 112, 115–125. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, C.; Liu, L.; Wang, D. Marine Geohazards: Review and Future Perspective. Acta Geol. Sin. Engl. Ed 2016, 90, 1455–1470. [Google Scholar] [CrossRef]
- Talling, P.J.; Clare, M.; Urlaub, M.; Pope, E.; Hunt, J.E.; Watt, S. Large Submarine Landslides on Continental Slopes Geohazards, Methane Release, and Climate Change. Oceanography 2014, 27, 32–45. [Google Scholar] [CrossRef]
- Obelcz, J.; Xu, K.; Georgiou, I.Y.; Maloney, J.; Bentley, S.J.; Miner, M.D. Sub-decadal submarine landslides are important drivers of deltaic sediment flux: Insights from the Mississippi River Delta Front. Geology 2017, 45, 703–706. [Google Scholar] [CrossRef]
- Talling, P.J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Mar. Geol. 2014, 352, 155–182. [Google Scholar] [CrossRef]
- Soutter, E.L.; Kane, I.A.; Huuse, M. Giant submarine landslide triggered by Paleocene mantle plume activity in the North Atlantic. Geology 2018, 46, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Strasser, M.; Koelling, M.; Ferreira, C.D.S.; Fink, H.G.; Fujiwara, T.; Henkel, S.; Ikehara, K.; Kanamatsu, T.; Kawamura, K.; Kodaira, S.; et al. A slump in the trench: Tracking the impact of the 2011 Tohoku-Oki earthquake. Geology 2013, 41, 935–938. [Google Scholar] [CrossRef] [Green Version]
- Lo Iacono, C.; Gracia, E.; Zaniboni, F.; Pagnoni, G.; Tinti, S.; Bartolome, R.; Masson, D.G.; Wynn, R.B.; Lourenco, N.; de Abreu, M.P.; et al. Large, deepwater slope failures: Implications for landslide-generated tsunamis. Geology 2012, 40, 931–934. [Google Scholar] [CrossRef]
- Zhu, C. Did a submarine landslide worsen the 2018 Indonesia tsunami? Sci. Prog. 2019, 102, 88–90. [Google Scholar] [CrossRef]
- Tan, H.; Ruffini, G.; Heller, V.; Chen, S. A Numerical Landslide-Tsunami Hazard Assessment Technique Applied on Hypothetical Scenarios at Es Vedra, Offshore Ibiza. J. Mar. Sci. Eng. 2018, 6. [Google Scholar] [CrossRef]
- Fine, I.V.; Rabinovich, A.B.; Bornhold, B.D.; Thomson, R.E.; Kulikov, E.A. The Grand Banks landslide-generated tsunami of November 18, 1929: Preliminary analysis and numerical modeling. Mar. Geol. 2005, 215, 45–57. [Google Scholar] [CrossRef]
- Tappin, D.R.; Watts, P.; Grilli, S.T. The Papua New Guinea tsunami of 17 July 1998: Anatomy of a catastrophic event. Nat. Hazards Earth Syst. 2008, 8, 243–266. [Google Scholar] [CrossRef]
- Tappin, D.R.; Grilli, S.T.; Harris, J.C.; Geller, R.J.; Masterlark, T.; Kirby, J.T.; Shi, F.; Ma, G.; Thingbaijam, K.K.S.; Mai, P.M. Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar. Geol. 2014, 357, 344–361. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Li, J.; Li, J.; Fang, Y.; Tang, Y. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea. Mar. Geophys. Res. 2013, 34, 221–238. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, X.; Völker, D.; Wu, S.; Wang, L.; Li, W.; Li, Q.; Zhu, Z.; Li, C.; Qin, Z.; et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea. Mar. Pet. Geol. 2016, 77, 1125–1139. [Google Scholar] [CrossRef]
- Sun, Q.; Cartwright, J.; Xie, X.; Lu, X.; Yuan, S.; Chen, C. Reconstruction of repeated Quaternary slope failures in the northern South China Sea. Mar. Geol. 2018, 401, 17–35. [Google Scholar] [CrossRef]
- Li, W.; Wu, S.; Voelker, D.; Zhao, F.; Mi, L.; Kopf, A. Morphology, seismic characterization and sediment dynamics of the Baiyun Slide Complex on the northern South China Sea margin. J. Geol. Soc. 2014, 171, 865–877. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; Wu, S.; Völker, D.; Zeng, H.; Cai, G.; Li, Q. Submarine landslides on the north continental slope of the South China Sea. J. Ocean Univ. China 2018, 17, 83–100. [Google Scholar] [CrossRef]
- Li, W.; Alves, T.M.; Wu, S.; Rebesco, M.; Zhao, F.; Mi, L.; Ma, B. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea). Earth Planet. Sci. Lett. 2016, 451, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Sun, Z. A study of faulting patterns in the Pearl River Mouth Basin through analogue modeling. Mar. Geophys. Res. 2013, 33, 209–219. [Google Scholar] [CrossRef]
- Han, J.; Xu, G.; Li, Y.; Zhuo, H. Evolutionary history and controlling factors of the shelf breaks in the Pearl River Mouth Basin, northern South China Sea. Mar. Pet. Geol. 2016, 77, 179–189. [Google Scholar] [CrossRef]
- Zhou, W.; Gao, X.; Wang, Y.; Zhuo, H.; Zhu, W.; Xu, Q.; Wang, Y. Seismic geomorphology and lithology of the early Miocene Pearl River Deepwater Fan System in the Pearl River Mouth Basin, northern South China Sea. Mar. Pet. Geol. 2015, 68, 449–469. [Google Scholar] [CrossRef]
- Xie, H.; Zhou, D.; Li, Y.; Pang, X.; Li, P.; Chen, G.; Li, F.; Cao, J. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea. Tectonophysics 2014, 615–616, 182–198. [Google Scholar] [CrossRef]
- Li, J.; Ye, J.; Qin, X.; Qiu, H.; Wu, N.; Lu, H.; Xie, W.; Lu, J.; Peng, F.; Xu, Z.; et al. The first offshore natural gas hydrate production test in South China Sea. China Geol. 2018, 1, 5–16. [Google Scholar] [CrossRef]
- Xu, S.H.; Wang, Y.M.; Xu, G.Q.; Zeng, G.D.; Guo, W.; Gong, C.L.; Cai, C.E.; Tang, W.; Zhuo, H.T.; Wan, H.Q. Linking shelf delta to deep-marine deposition in reservoir dispersal of the upper Oligocene strata in the Baiyun Sag, the northern South China Sea. Aust. J. Earth Sci. 2015, 32, 365–382. [Google Scholar] [CrossRef]
- Pang, X.; Yang, S.; Zhu, M.; Li, J. Deep-water Fan Systems and Petroleum Resources on the Northern Slope of the South China Sea. Acta Geol. Sin. Engl. 2004, 78, 626–631. [Google Scholar] [CrossRef]
- Peng, D.; Chen, C.; Pang, X.; Zhu, M.; Yang, F. Discovery of deep-water fan system in South China Sea. Acta Pet. Sin. 2004, 25, 17–23. [Google Scholar]
- Xie, H.; Zhou, D.; Pang, X.; Li, Y.; Wu, X.; Qiu, N.; Li, P.; Chen, G. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea. Mar. Geophys. Res. 2013, 34, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Chen, C.; Zhu, M.; He, M.; Shen, J.; Lian, S.; Wu, X.; Shao, L. Baiyun movement: A significant tectonic event on Oligocene/Miocene boundary in the northern South China Sea and its regional implications. J. Earth Sci. China 2009, 20, 49–56. [Google Scholar] [CrossRef]
- Fort, X.; Brun, J. Kinematics of regional salt flow in the northern Gulf of Mexico. Geol. Soc. Lond. Spec. Publ. 2012, 363, 265–287. [Google Scholar] [CrossRef] [Green Version]
- Winker, C.D.; Edwards, M.B. Unstable progradational clastic shelf margins. In The Shelfbreak: Critical Interface on Continental Margins; Stanley, D.J., Moore, G.T., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1983; pp. 139–157. [Google Scholar]
- Liu, B.; Pang, X.; Yan, C.; Liu, J.; Lian, S.; He, M.; Shen, J. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration. Acta Pet. Sin. 2011, 32, 234–242. [Google Scholar]
- Wang, P.; Prell, W.L.; Blum, P. Proceedings of the Ocean Drilling Program, Initial Reports; Ocean Drilling Program: College Station, TX, USA, 2000. [Google Scholar]
- Li, Q.; Wang, P.; Zhao, Q.; Shao, L.; Zhong, G.; Tian, J.; Cheng, X.; Jian, Z.; Su, X. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Mar. Geol. 2006, 230, 217–235. [Google Scholar] [CrossRef]
- Shao, L.; Pang, X.; Chen, C.; Shi, H.; Li, Q.; Qiao, P. Terminal Oligocene sedimentary environments and abrupt provenance change event in the northern South China Sea. Geol. China 2007, 34, 1022–1031. [Google Scholar]
- Li, Q.; Jian, Z.; Su, X. Late Oligocene rapid transformations in the South China Sea. Mar. Micropaleontol. 2005, 54, 5–25. [Google Scholar] [CrossRef]
- Brothers, D.S.; Luttrell, K.M.; Chaytor, J.D. Sea-level--induced seismicity and submarine landslide occurrence. Geology 2013, 41, 979. [Google Scholar] [CrossRef]
- Zhu, C.; Jia, Y.; Liu, X.; Zhang, H.; Wen, M.; Huang, M.; Shan, H. Classification and genetic machanism of submarine landslide: A review. Mar. Geol. Quat. Geol. 2015, 35, 153–163. [Google Scholar] [CrossRef]
- Chadwick, W.W.; Dziak, R.P.; Haxel, J.H.; Embley, R.W.; Matsumoto, H. Submarine landslide triggered by volcanic eruption recorded by in situ hydrophone. Geology 2012, 40, 51–54. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Hartz, E.H. Large, coherent, submarine landslide associated with Pan-African foreland flexure. Geology 1999, 27, 687–690. [Google Scholar] [CrossRef]
- Canals, M.; Lastras, G.; Urgeles, R.; Casamor, J.L.; Mienert, J.; Cattaneo, A.; De Batist, M.; Haflidason, H.; Imbo, Y.; Laberg, J.S.; et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: Case studies from the COSTA project. Mar. Geol. 2004, 213, 9–72. [Google Scholar] [CrossRef]
- Baeten, N.J.; Laberg, J.S.; Vanneste, M.; Forsberg, C.F.; Kvalstad, T.J.; Forwick, M.; Vorren, T.O.; Haflidason, H. Origin of shallow submarine mass movements and their glide planes-Sedimentological and geotechnical analyses from the continental slope off northern Norway. J. Geophys. Res. Earth 2014, 119, 2335–2360. [Google Scholar] [CrossRef] [Green Version]
- Hacker, D.B.; Biek, R.F.; Rowley, P.D. Catastrophic emplacement of the gigantic Markagunt gravity slide, southwest Utah (USA): Implications for hazards associated with sector collapse of volcanic fields. Geology 2014, 42, 943–946. [Google Scholar] [CrossRef]
- Hunt, J.E.; Jarvis, I. Prodigious submarine landslides during the inception and early growth of volcanic islands. Nat. Commun. 2017, 8, 2061. [Google Scholar] [CrossRef] [Green Version]
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique stepwise rise and growth of the Tibet plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Briais, A.; Patriat, P.; Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. Solid Earth 1993, 98, 6299–6328. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Spicer, R.A.; Yang, J.; Xu, Q.; Cai, Q.; Li, S.; Lai, Q.; Wang, H.; Spicer, T.E.V.; Yue, Y.; et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 2017, 45, 215–218. [Google Scholar] [CrossRef]
- Wang, D.; Wu, S.; Li, C.; Yao, G. Evidence for submarine landslide in Late Miocene during reversion of strike-slip along the Red River Fault. Sci. Sin. Terrae 2016, 46, 1349–1357. [Google Scholar]
- Zhu, M.; Graham, S.; Pang, X.; McHargue, T. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Mar. Pet. Geol. 2010, 27, 307–319. [Google Scholar] [CrossRef]
- Minisini, D.; Trincardi, F.; Asioli, A.; Canu, M.; Foglini, F. Morphologic variability of exposed mass-transport deposits on the eastern slope of Gela Basin (Sicily channel). Basin Res. 2007, 19, 217–240. [Google Scholar] [CrossRef]
- Gamberi, F.; Rovere, M.; Marani, M. Mass-transport complex evolution in a tectonically active margin (Gioia Basin, Southeastern Tyrrhenian Sea). Mar. Geol. 2011, 279, 98–110. [Google Scholar] [CrossRef]
- Berndt, C.; Costa, S.; Canals, M.; Camerlenghi, A.; de Mol, B.; Saunders, M. Repeated slope failure linked to fluid migration: The Ana submarine landslide complex, Eivissa Channel, Western Mediterranean Sea. Earth Planet. Sci. Lett. 2012, 319–320, 65–74. [Google Scholar] [CrossRef]
- Prior, D.B.; Suhayda, J.N.; Lu, N.Z.; Bornhold, B.D. Storm wave reactivation of a submarine landslide. Nature 1989, 341, 47–50. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Cheng, S.; Li, Q.; Shan, H.; Lu, J.; Shen, Z.; Liu, X.; Jia, Y. Giant Submarine Landslide in the South China Sea: Evidence, Causes, and Implications. J. Mar. Sci. Eng. 2019, 7, 152. https://doi.org/10.3390/jmse7050152
Zhu C, Cheng S, Li Q, Shan H, Lu J, Shen Z, Liu X, Jia Y. Giant Submarine Landslide in the South China Sea: Evidence, Causes, and Implications. Journal of Marine Science and Engineering. 2019; 7(5):152. https://doi.org/10.3390/jmse7050152
Chicago/Turabian StyleZhu, Chaoqi, Sheng Cheng, Qingping Li, Hongxian Shan, Jing’an Lu, Zhicong Shen, Xiaolei Liu, and Yonggang Jia. 2019. "Giant Submarine Landslide in the South China Sea: Evidence, Causes, and Implications" Journal of Marine Science and Engineering 7, no. 5: 152. https://doi.org/10.3390/jmse7050152
APA StyleZhu, C., Cheng, S., Li, Q., Shan, H., Lu, J., Shen, Z., Liu, X., & Jia, Y. (2019). Giant Submarine Landslide in the South China Sea: Evidence, Causes, and Implications. Journal of Marine Science and Engineering, 7(5), 152. https://doi.org/10.3390/jmse7050152