Distribution of Polycyclic Aromatic Hydrocarbons in Sunken Oils in the Presence of Chemical Dispersant and Sediment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Conditions and Procedure
2.3. Analytical Procedure of PAHs
2.4. Data Analysis
3. Results
3.1. Effect of Sediment Alone
3.2. Combined Effect of Dispersant and Sediment
3.2.1. Distribution of PAHs in the Sunken Oils
3.2.2. The OSE of PAHs in the Presence of GM-2 and Quartz Sand
3.2.3. The OSE of TPH in the Presence of GM-2 and Quartz Sand
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Grubesic, T.H.; Wei, R.; Nelson, J. Optimizing oil spill cleanup efforts: A tactical approach and evaluation framework. Mar. Pollut. Bull. 2017, 125, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.K.; Lee, K.; King, T.; Boufadel, M.C.; Venosa, A.D. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank. Mar. Pollut. Bull. 2010, 60, 1550–1559. [Google Scholar] [CrossRef]
- Wang, W.Z.; Zheng, Y.; Lee, K. Role of the hydrophobicity of mineral fines in the formation of oil-mineral aggregates. Can. J. Chem. Eng. 2013, 91, 698–703. [Google Scholar] [CrossRef]
- Walker, A.; Stern, C.; Scholz, D.; Nielsen, E.; Csulak, F.; Gaudiosi, R. Consensus ecological risk assessment of potential transportation-related Bakken and Dilbit crude oil spills in the Delaware Bay watershed, USA. J. Mar. Sci. Eng. 2016, 4, 23. [Google Scholar] [CrossRef]
- Qi, Z.; Zhang, C.; Han, J.; Gao, Y.; Xiong, D. A decision model responding to the refuge request from a ship in need of assistance. Mar. Policy 2018, 95, 294–300. [Google Scholar] [CrossRef]
- IMO. Operational Guidelines on Sunken and Submerged Oil Assessment and Removal Techniques; International Maritime Organization: London, UK, 2012. [Google Scholar]
- API. Sunken oil Detection and Recovery; American Petroleum Institute: Washington, DC, USA, 2016. [Google Scholar]
- Romero, I.C.; Toro-Farmer, G.; Diercks, A.-R.; Schwing, P.; Muller-Karger, F.; Murawski, S.; Hollander, D.J. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ. Pollut. 2017, 228, 179–189. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. The Use of Dispersants in Marine Oil Spill Response; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Hansen, K.A. Research efforts for detection and recovery of submerged oil. In Proceedings of the 33rd Arctic and Marine Oil Spill Program, Ottawa, ON, Canada, 1 January 2010; pp. 1055–1069. [Google Scholar]
- Grote, M.; van Bernem, C.; Bohme, B.; Callies, U.; Calvez, I.; Christie, B.; Colcomb, K.; Damian, H.P.; Farke, H.; Grabsch, C.; et al. The potential for dispersant use as a maritime oil spill response measure in German waters. Mar. Pollut. Bull. 2017. [Google Scholar] [CrossRef]
- Lan, D.; Liang, B.; Bao, C.; Ma, M.; Xu, Y.; Yu, C. Marine oil spill risk mapping for accidental pollution and its application in a coastal city. Mar. Pollut. Bull. 2015, 96, 220–225. [Google Scholar] [CrossRef]
- Li, X.; Xiong, D.; Ding, G.; Fan, Y.; Ma, X.; Wang, C.; Xiong, Y.; Jiang, X. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish. Chemosphere 2019, 235, 423–433. [Google Scholar] [CrossRef]
- Li, X.; Ding, G.; Xiong, Y.; Ma, X.; Fan, Y.; Xiong, D. Toxicity of water-accommodated fractions (WAF), chemically enhanced WAF (CEWAF) of oman crude oil and dispersant to early-life dtages of zebrafish (Danio rerio). B Environ. Contam. Toxicol. 2018, 101, 314–319. [Google Scholar] [CrossRef]
- Fisher, C.R.; Demopoulos, A.W.J.; Cordes, E.E.; Baums, I.B.; White, H.K.; Bourque, J.R. Coral Communities as Indicators of Ecosystem-Level Impacts of the Deepwater Horizon Spill. BioScience 2014, 64, 796–807. [Google Scholar] [CrossRef]
- Murawski, S.A.; Hogarth, W.T.; Peebles, E.B.; Barbeiri, L. Prevalence of External Skin Lesions and Polycyclic Aromatic Hydrocarbon Concentrations in Gulf of Mexico Fishes, Post-Deepwater Horizon. Trans. Am. Fish. Soc. 2014, 143, 1084–1097. [Google Scholar] [CrossRef] [Green Version]
- Duan, M.; Xiong, D.; Bai, X.; Gao, Y.; Xiong, Y.; Gao, X.; Ding, G. Transgenerational effects of heavy fuel oil on the sea urchin Strongylocentrotus intermedius considering oxidative stress biomarkers. Mar. Environ. Res. 2018, 141, 138–147. [Google Scholar] [CrossRef]
- Duan, M.; Xiong, D.; Yang, M.; Xiong, Y.; Ding, G. Parental exposure to heavy fuel oil induces developmental toxicity in offspring of the sea urchin Strongylocentrotus intermedius. Ecotoxicol. Environ. Saf. 2018, 159, 109–119. [Google Scholar] [CrossRef]
- Qin, N.; He, W.; Kong, X.-Z.; Liu, W.-X.; He, Q.-S.; Yang, B.; Wang, Q.-M.; Yang, C.; Jiang, Y.-J.; Jorgensen, S.E. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water–SPM–sediment system of Lake Chaohu, China. Sci. Total. Environ. 2014, 496, 414–423. [Google Scholar] [CrossRef]
- Usher, D. Method and Apparatus for Subsurface oil Recovery Using a Submersible Unit. U.S. Patent US7597811, 6 October 2009. [Google Scholar]
- Schnitz, P.R.; Wolf, M.A. Nonfloating oil spill response planning. Int. Oil Spill Conf. Proc. 2001, 2001, 1307–1311. [Google Scholar] [CrossRef]
- Hammoud, B.; Ndagijimana, F.; Faour, G.; Ayad, H.; Jomaah, J. Bayesian statistics of wide-band radar reflections for oil spill detection on rough ocean surface. J. Mar. Sci. Eng. 2019, 7, 12. [Google Scholar] [CrossRef]
- Jacqueline, M. Spills of nonfloating oil: Evaluation of response technologies. Int. Oil Spill Conf. Proc. 2008, 2008, 261–267. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, X.; Cai, Z.; O’Reilly, S.E.; Hao, X.; Zhao, D. A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Mar. Pollut. Bull. 2014, 79, 16–33. [Google Scholar] [CrossRef]
- Hansen, B.H.; Altin, D.; Olsen, A.J.; Nordtug, T. Acute toxicity of naturally and chemically dispersed oil on the filter-feeding copepod Calanus finmarchicus. Ecotox. Environ. Safe 2012, 86, 38–46. [Google Scholar] [CrossRef]
- Rios, M.C.; Moreira, I.T.; Oliveira, O.M.; Pereira, T.S.; de Almeida, M.; Trindade, M.C.; Menezes, L.; Caldas, A.S. Capability of Paraguacu estuary (Todos os Santos Bay, Brazil) to form oil-SPM aggregates (OSA) and their ecotoxicological effects on pelagic and benthic organisms. Mar. Pollut. Bull. 2017, 114, 364–371. [Google Scholar] [CrossRef]
- Yang, B.L.; Xiong, D.Q. Bioaccumulation and subacute toxicity of mechanically and chemically dispersed heavy fuel oil in sea urchin (Glyptocidaris crenulari). Sci. Mar. 2015, 79, 497–504. [Google Scholar] [CrossRef]
- Yin, F.; John, G.F.; Hayworth, J.S.; Clement, T.P. Long-term monitoring data to describe the fate of polycyclic aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama’s beaches. Sci. Total. Environ. 2015, 508, 46–56. [Google Scholar] [CrossRef]
- Voice, T.C.; Weber, W.J., Jr. Sorption of hydrophobic compounds by sediments, soils and suspended solids—I. Theory and background. Water Res. 1983, 17, 1433–1441. [Google Scholar] [CrossRef]
- Wang, H.; Wang, A.; Bi, N.; Zeng, X.; Xiao, H. Seasonal distribution of suspended sediment in the Bohai Sea, China. Cont. Shelf Res. 2014, 90, 17–32. [Google Scholar] [CrossRef]
- Lim, M.W.; Lau, E.V.; Poh, P.E. A comprehensive guide of remediation technologies for oil contaminated soil-Present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, X.; Ju, Z.; Yu, Y.; Qi, Z.; Xiong, D. Effects of the suspended sediment concentration and oil type on the formation of sunken and suspended oils in the Bohai Sea. Environ. Sci. Proc. Impacts 2018, 20, 1404–1413. [Google Scholar] [CrossRef]
- Vonk, S.M.; Hollander, D.J.; Murk, A.J. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique? Mar. Pollut. Bull. 2015, 100, 5–12. [Google Scholar] [CrossRef]
- Sun, J.; Khelifa, A.; Zheng, X.; Wang, Z.; So, L.L.; Wong, S.; Yang, C.; Fieldhouse, B. A laboratory study on the kinetics of the formation of oil-suspended particulate matter aggregates using the NIST-1941b sediment. Mar. Pollut. Bull. 2010, 60, 1701–1707. [Google Scholar] [CrossRef]
- Sun, J.; Khelifa, A.; Zhao, C.; Zhao, D.; Wang, Z. Laboratory investigation of oil-suspended particulate matter aggregation under different mixing conditions. Sci. Total. Environ. 2014, 473–474, 742–749. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, D.; Zhao, C.; Liu, F.; Zheng, X. Investigation of the kinetics of oil-suspended particulate matter aggregation. Mar. Pollut. Bull. 2013, 76, 250–257. [Google Scholar] [CrossRef]
- Loh, A.; Shim, W.J.; Ha, S.Y.; Yim, U.H. Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment. Ocean Sci. J. 2014, 49, 329–341. [Google Scholar] [CrossRef]
- Mu, J.; Jin, F.; Ma, X.; Lin, Z.; Wang, J. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma). Environ. Toxicol. Chem. 2014, 33, 2576–2583. [Google Scholar] [CrossRef]
- King, T.; Robinson, B.; Ryan, S.; Lee, K.; Boufadel, M.; Clyburne, J. Estimating the usefulness of chemical dispersant to treat surface spills of oil sands products. J. Mar. Sci. Eng. 2018, 6, 128. [Google Scholar] [CrossRef]
- Sterling, M.C., Jr.; Bonner, J.S.; Ernest, A.N.; Page, C.A.; Autenrieth, R.L. Characterizing aquatic sediment-oil aggregates using in situ instruments. Mar. Pollut. Bull. 2004, 48, 533–542. [Google Scholar] [CrossRef]
- Ma, X.; Cogswell, A.; Li, Z.; Lee, K. Particle size analysis of dispersed oil and oil-mineral aggregates with an automated ultraviolet epi-fluorescence microscopy system. Environ. Technol. 2008, 29, 739–748. [Google Scholar] [CrossRef]
- Sørensen, L.; Melbye, A.G.; Booth, A.M. Oil droplet interaction with suspended sediment in the seawater column: Influence of physical parameters and chemical dispersants. Mar. Pollut. Bull. 2014, 78, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Z.; Zheng, Y.; Lee, K. Chemical dispersion of oil with mineral fines in a low temperature environment. Mar. Pollut. Bull. 2013, 72, 205–212. [Google Scholar] [CrossRef]
- Wu, M.; Xu, H.; Yu, Y.; Wang, L. High performance liquid chromatography–tandem mass spectrometry for rapid and sensitive analysis of six polycyclic aromatic hydrocarbons in wastewater. Water Sci. Technol. 2011, 64, 477–484. [Google Scholar] [CrossRef]
- Khelifa, A.; Fieldhouse, B.; Wang, Z.; Yang, C.; Landriault, M.; Fingas, M.; Brown, C.; Gamble, L.; Pjontek, D. A laboratory study on formation of oil-SPM aggregates using the NIST standard reference material 1941b. In Proceedings of the 30th Arctic and Marine Oilspill Program, AMOP Technical Seminar, Edmonton, AB, Canada, 5–7 June 2007; pp. 35–47. [Google Scholar]
- Holder, E.L.; Conmy, R.N.; Venosa, A.D. Comparative Laboratory-Scale Testing of Dispersant Effectiveness of 23 Crude Oils Using Four Different Testing Protocols. J. Environ. Prot. 2015, 6, 628–639. [Google Scholar] [CrossRef]
- Kaku, V.; Boufadel, M.W.; Weaver, J. Scaling Exponents of Structure Functions in an Eccentrically Rotating Flask. Adv. Theor. Appl. Mech. 2010, 3, 233–252. [Google Scholar]
- Khelifa, A.; Fingas, M.; Brown, C. Effects of Dispersants on oil–SPM Aggregation and Fate in US Coastal Waters; Coastal Response Research Center at University of New Hampshire: Durham, NH, USA, 2008. [Google Scholar]
- Delvigne, G.A.L.; Sweeney, C.E. Natural dispersion of oil. Oil Chem. Pollut. 1988, 4, 281–310. [Google Scholar] [CrossRef]
- Xing, B. The effect of the quality of soil organic matter on sorption of naphthalene. Chemosphere 1997, 35, 633–642. [Google Scholar] [CrossRef]
- Lee, K.; Stoffyn-Egli, P.; Tremblay, G.H.; Owens, E.H.; Sergy, G.A.; Guénette, C.C.; Prince, R.C. Oil–mineral aggregate formation on oiled beaches: Natural attenuation and sediment relocation. Spill Sci. Technol. B 2003, 8, 285–296. [Google Scholar] [CrossRef]
- Khelifa, A.; Stoffyn-Egli, P.; Hill, P.S.; Lee, K. Characteristics of oil droplets stabilized by mineral particles: Effects of oil type and temperature. Spill Sci. Technol. B 2002, 8, 19–30. [Google Scholar] [CrossRef]
- Le Floch, S.; Guyomarch, J.; Merlin, F.-X.; Stoffyn-Egli, P.; Dixon, J.; Lee, K. The Influence of Salinity on Oil–Mineral Aggregate Formation. Spill Sci. Technol. B 2002, 8, 65–71. [Google Scholar] [CrossRef]
- Lee, K.; Stoffyn-Egli, P.; Wood, P.A.; Lune, T. Formation and structure of oil-mineral fines aggregates in coastal environments. In Proceedings of the 21st Arctic and Marine Oilspill Program, Edmonton, AB, Canada, 10–12 June 1998. [Google Scholar]
- Gustitus, S.A.; John, G.F.; Clement, T.P. Effects of weathering on the dispersion of crude oil through oil-mineral aggregation. Sci. Total Environ. 2017, 587–588, 36–46. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Y.; Wang, X.; Zwicker, T.; Lu, J. Enhanced oil–mineral aggregation with modified bentonite. Water Sci. Technol. 2013, 67, 1581–1589. [Google Scholar] [CrossRef]
- Zhang, H.; Khatibi, M.; Zheng, Y.; Lee, K.; Li, Z.; Mullin, J.V. Investigation of OMA formation and the effect of minerals. Mar. Pollut. Bull. 2010, 60, 1433–1441. [Google Scholar] [CrossRef]
- Payne, J.R.; Clayton, J.R.; Kirstein, B.E. Oil/suspended particulate material interactions and sedimentation. Spill Sci. Technol. B 2003, 8, 201–221. [Google Scholar] [CrossRef]
- Rabodonirina, S.; Rasolomampianina, R.; Krier, F.; Drider, D.; Merhaby, D.; Net, S.; Ouddane, B. Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. J. Environ. Manag. 2019, 232, 1–7. [Google Scholar] [CrossRef]
- Incardona, J.P. Molecular Mechanisms of Crude Oil Developmental Toxicity in Fish. Arch. Environ. Decontam. Toxicol. 2017, 73, 19–32. [Google Scholar] [CrossRef]
- Zhao, L.; Boufadel, M.C.; Geng, X.; Lee, K.; King, T.; Robinson, B.; Fitzpatrick, F. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs). Mar. Pollut. Bull. 2016, 106, 245–259. [Google Scholar] [CrossRef]
Properties of Oil at 25 °C | ||||
Density (g/mL) | Asphaltenes (wt %) | IFT 1 (N/m) | Viscosity (mm2/s) | |
HFO 380 | 0.9821 | 11.35 | 0.034 | 15,529.70 |
Properties of Sediment | ||||
Density (g/mL) | Contact angle | Volume median diameter (μm) | ||
Quartz sand | 2.08 | <10 °C | 6.38 | |
Properties of Seawater | ||||
pH | Salinity (‰) | Conductivity (ms/cm) | ||
Seawater | 7.60 ± 0.30 | 35.00 ± 1.00 | 41.70 ± 1.20 |
Experiment 1 | Experiment 2 | |
---|---|---|
Experimental conditions | ||
Volume of flask | 500 (mL) | |
Seawater volume | 400 (mL) | |
Initial oil mass | 100 (mg) | |
Reciprocating shaker speed | 180 (cycles/min) | |
Sediment concentration | 200 (mg/L) | |
Temperature | 25 (°C) | |
Shaking time | 240 (min) | |
Factorial levels | ||
Sediment type | quartz sand | quartz sand |
Dispersant type | - | GM-2 |
DOR | - | 1:10; 1:5; 1:3 |
Compound | Abbreviation | Water Solubility at 25 °C (mg/L) | logKow |
---|---|---|---|
Naphthalene | Nap | 31.00 | 3.30 |
Acenaphthylene | Acy | 16.10 | 3.90 |
Acenaphthene | Ace | 3.80 | 3.97 |
Fluorene | Fl | 1.90 | 4.18 |
Phenanthrene | Phe | 1.10 | 4.57 |
Anthracene | Ant | 0.045 | 4.54 |
Fluoranthene | Flu | 0.26 | 5.22 |
Pyrene | Pyr | 0.13 | 5.18 |
Benz[a]anthracene | BaA | 0.011 | 5.91 |
Chrysene | Chr | 0.0015 | 5.79 |
Benzo[b]fluoranthene | BbFlu | 0.0015 | 6.44 |
Benzo[k]fluoranthene | BkFlu | 0.00080 | 6.44 |
Benzo[a]pyrene | BaP | 0.0038 | 6.44 |
Dibenz[ah]anthracene | DBahA | 0.00050 | 7.19 |
Indeno[1,2,3-cd]pyrene | IcdP | 0.062 | 7.04 |
Benzo[ghi]perylene | BghiP | 0.00026 | 7.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Xiong, D.; Qi, Z.; Li, X.; Ju, Z.; Zhuang, X. Distribution of Polycyclic Aromatic Hydrocarbons in Sunken Oils in the Presence of Chemical Dispersant and Sediment. J. Mar. Sci. Eng. 2019, 7, 282. https://doi.org/10.3390/jmse7090282
Gao Y, Xiong D, Qi Z, Li X, Ju Z, Zhuang X. Distribution of Polycyclic Aromatic Hydrocarbons in Sunken Oils in the Presence of Chemical Dispersant and Sediment. Journal of Marine Science and Engineering. 2019; 7(9):282. https://doi.org/10.3390/jmse7090282
Chicago/Turabian StyleGao, Yali, Deqi Xiong, Zhixin Qi, Xishan Li, Zhonglei Ju, and Xueqiang Zhuang. 2019. "Distribution of Polycyclic Aromatic Hydrocarbons in Sunken Oils in the Presence of Chemical Dispersant and Sediment" Journal of Marine Science and Engineering 7, no. 9: 282. https://doi.org/10.3390/jmse7090282
APA StyleGao, Y., Xiong, D., Qi, Z., Li, X., Ju, Z., & Zhuang, X. (2019). Distribution of Polycyclic Aromatic Hydrocarbons in Sunken Oils in the Presence of Chemical Dispersant and Sediment. Journal of Marine Science and Engineering, 7(9), 282. https://doi.org/10.3390/jmse7090282