Ecophysiological Analysis of Mangrove Seedlings Kandelia obovata Exposed to Natural Low Temperature at Near 30°N
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Processing
2.2. Chlorophyll and Phenol Determination
2.3. Volatile Oils Detection
2.4. Enzyme Activity Detection
2.5. MDA Detection
2.6. Statistical Analysis
3. Results
3.1. Chlorophyll Content
3.2. Total Phenol Content
3.3. Volatile Oil Components
3.4. Enzymatic Antioxidants
3.5. Non-Enzymatic Antioxidants
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghasemia, S.; Moghaddamb, S.S.; Rahimib, A.; Damalas, C.A.; Naji, A. Ecological risk assessment of coastal ecosystems: The case of mangrove forests in Hormozgan Province, Iran. Chemosphere 2017, 191, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.W.; Qiu, H.L.; Zhang, G.; Li, J. Bioaccumulation and cycling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in three mangrove reserves of south China. Chemosphere 2019, 217, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Tam, N.F.Y.; Wong, Y.S. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ. Pollut. 2000, 110, 195–205. [Google Scholar] [CrossRef]
- Lewis, M.; Pryor, R.; Wilking, L. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review. Environ. Pollut. 2011, 159, 2328–2346. [Google Scholar] [CrossRef] [PubMed]
- Chai, M.; Shen, X.; Li, R.; Qiu, G. The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM–AVS analysis. Mar. Pollut. Bull. 2015, 97, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.; Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 1980, 31, 491–543. [Google Scholar] [CrossRef]
- Tomlinson, P.B. The Botany of Mangrove. Q. Rev. Biol. 1987, 52, 238. [Google Scholar]
- Kao, W.Y.; Shih, C.N.; Tsai, T.T. Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina. Tree Physiol. 2004, 24, 859–864. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.-K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Fortunato, A.S.; Lidon, F.C.; Batista-Santos, P.; Leitao, A.E.; Pais, I.P.; Ribeiro, A.I.; Ramalho, J.C. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J. Plant Physiol. 2010, 167, 333–342. [Google Scholar] [CrossRef]
- Posmyk, M.M.; Bailly, C.; Szafranska, K.; Janas, K.M.; Corbineau, F. Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J. Plant Physiol. 2005, 162, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Ensminger, I.; Busch, F.; Huner, N.P.A. Photostasis and cold acclimation: Sensing low temperature through photosynthesis. Physiol. Plant. 2006, 126, 28–44. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, S.B.; Xu, J.C.; Liu, T. Plasticity in roles of cyclic electron flow around photosystem I at contrasting temperatures in the chilling-sensitive plant Calotropis gigantea. Environ. Exp. Bot. 2017, 141, 145–153. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Zhang, G.-X.; Qi, M.-F.; Li, T.-L. Effects of Calcium on Photosynthesis, Antioxidant System, and Chloroplast Ultrastructure in Tomato Leaves under Low Night Temperature Stress. J. Plant Growth Regul. 2015, 34, 263–273. [Google Scholar] [CrossRef]
- Campos, M.D.; Nogales, A.; Cardoso, H.G.; Campos, C.; Grzebelus, D.; Velada, I.; Schmitt, B.A. Carrot plastid terminal oxidase gene (DcPToX) responds early to chilling and harbors intronic pre-mirnas related to plant disease defense. Plant Gene 2016, 7, 21–25. [Google Scholar] [CrossRef]
- Lin, P. Mangrove Ecosystem in China; Science Press: Beijing, China, 1999. [Google Scholar]
- Osland, M.J.; Enwright, N.; Day, R.H.; Doyle, T.W. Winter climate change and coastal wetland foundation species: Salt marshes vs. mangrove forests in the southeastern United States. Glob. Chang. Biol. 2013, 19, 1482–1494. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Nora, F.Y.T.; Huang, J.; Zeng, X.; Meng, X.; Zhong, C.; Wong, Y.; Lin, G. Comparison of ecophysiological characteristics between introduced and indigenous mangrove species in China. Estuar. Coast. Shelf Sci. 2008, 79, 644–652. [Google Scholar] [CrossRef]
- Chimner, R.A.; Fry, B.; Kaneshiro, M.Y.; Cormier, N. Current extent and historical expansion of introduced mangroves on O’ahu, Hawai’i. Pac. Sci. 2006, 60, 377–383. [Google Scholar] [CrossRef]
- Pickens, C.N.; Hester, M.W. Temperature tolerance of early life history stages of black mangrove Avicennia germinans: Implications for range expansion. Estuar. Coast. 2011, 34, 824–830. [Google Scholar] [CrossRef]
- Patton, C.; Lehmann, S.C.M.; Parker, J.D. Convergence of three mangrove species towards freeze-tolerant phenotypes at an expanding range edge. Funct. Ecol. 2015, 29, 1332–1340. [Google Scholar] [CrossRef]
- Coldren, G.A.; Proffitt, C.E. Mangrove seedling freeze tolerance depends on salt marsh presence, species, salinity, and age. Hydrobiologia 2017, 803, 159–171. [Google Scholar] [CrossRef]
- Peng, Y.L.; Wang, Y.S.; Fei, J.; Sun, C.C.; Cheng, H. Ecophysiological differences between three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) exposed to chilling stress. Ecotoxicology 2015, 24, 1722–1732. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Y.; Li, R.L.; Chai, M.; Shen, X.X.; Xu, H.L.; Qiu, G.Y. Heavy metal contamination and ecological risk in Futian mangrove forest sediment in Shenzhen Bay, South China. Mar. Pollut. Bull. 2015, 101, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Meeder, J.F.; Parkinson, R.W.; Ruiz, P.L.; Ross, M.S. Saltwater encroachment and prediction of future ecosystem response to the Anthropocene Marine Transgression, Southeast Saline Everglades, Florida. Hydrobiologia 2017, 803, 29–48. [Google Scholar] [CrossRef]
- Jespersen, D.; Zhang, J.; Huang, B. Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Sci. 2016, 249, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lamuela-Raventós, R.M.; Singleton, V.L.; Orthofer, R. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods. Mol. Biol. 1999, 299, 152–178. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Beer, R.F., Jr.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar]
- Ryu, K.; Dordick, J.S. How do organic solvents affect peroxidase structure and function? Biochemistry 1992, 31, 2588–2598. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. Am. J. Enol. Viticult. 2001, 52, 1–7. [Google Scholar]
- Upadhyay, V.P.; Mishra, P.K. An Ecological Analysis of Mangroves Ecosystem of Odisha on the Eastern Coast of India. Proc. Indian Natl. Sci. Acad. 2014, 80, 647–661. [Google Scholar] [CrossRef]
- Wakushima, S.; Kuraishi, S.; Sakurai, N. Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. J. Plant Res. 1994, 107, 39–46. [Google Scholar] [CrossRef]
- Zheng, C.F.; Ye, Y.; Liu, W.C.; Tang, J.W.; Zhang, C.N.; Qiu, Z.B.; Chen, J.N. Recovery of photosynthesis, sucrose metabolism, and proteolytic enzymes in Kandelia obovate from rare cold events in the northernmost mangrove, China. Ecol. Process. 2016, 5, 9. [Google Scholar] [CrossRef]
- Taylor, A.O.; Rowley, J.A. Plants under Climatic Stress: I. Low Temperature, High Light Effects on Photosynthesis. Plant Physiol. 1971, 47, 713. [Google Scholar] [CrossRef]
- Hatano, T.; Edamatsu, R.; Mori, A.; Fujita, Y.; Yasuhara, E. Eect of interaction of tannins with co-existing substances VI. Eect of tannins and related polyphenols on superoxide anion radical and on DPPH radical. Chem. Pharm. Bull. 1989, 37, 2016–2021. [Google Scholar] [CrossRef]
- Pennycooke, J.C.; Towill, L.E. Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification. Plant Cell Rep. 2000, 19, 733–737. [Google Scholar] [CrossRef]
- Meryman, H.T. Mechanics of freezing in living cells and tissues. Science 1956, 124, 515–521. [Google Scholar] [CrossRef]
- Hu, S.W.; Song, W.D.; Wang, H.; Yan, J.B.; Li, S.J. Study on the Volatile oil and Fatty Acids of the Leaves of the Mangrove Plants Cerbera manghas. J. Fujian. Forest. Sci. Technol. 2010, 37, 46–50. [Google Scholar]
- Guo, X.X.; Tao, Z.; Song, W.D. Characteristics of chemical constituents of volatile oil from leaves of mangrove plant Avicennia marina by gas chromatography/mass spectrometry. J. Trop. Oceanogr. 2008, 1, 57–59. [Google Scholar]
- Ji, L.L.; Song, W.D.; LIU, J.X. Determination of Volatile Oil and Fatty Acids in Screw-pine. Mod. Food Sci. Technol. 2008, 06, 588–592. [Google Scholar]
- Babu, B.; Wu, J.T. Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton 1. J. Phycol. 2008, 44, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [PubMed]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Jaleel, C.A.; Riadh, K.; Gopi, R.; Manivannan, P.; Inès, J.; Al-Juburi, H.J.; Zhao, C.-X.; Shao, H.-B.; Panneerselvam, R. Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 2009, 31, 427–436. [Google Scholar] [CrossRef]
- Feierabend, J. Catalases in plants: Molecular and functional properties and role in stress defence. In Antioxidants and Reactive Oxygen Species in Plants; Smirnoff, N., Ed.; Blackwell Publishing: Oxford, UK, 2007; pp. 101–140. [Google Scholar]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Bonnes-Taourel, D.; Guérin, M.C.; Torreilles, J. Is malonaldehyde a valuable indicator of lipid peroxidation? Biochem. Pharmacol. 1992, 44, 985–988. [Google Scholar] [CrossRef]
- Kuk, Y.I.; Shin, J.S.; Burgos, N.R.; Hwang, T.E.; Han, O.; Cho, B.H.; Jung, S.; Guh, J.O. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop. Sci. 2003, 43, 2109–2117. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yu, D.; Zheng, C.; Wang, Y.; Cai, L.; Guo, J.; Song, W.; Ji, L. Ecophysiological Analysis of Mangrove Seedlings Kandelia obovata Exposed to Natural Low Temperature at Near 30°N. J. Mar. Sci. Eng. 2019, 7, 292. https://doi.org/10.3390/jmse7090292
Wang Z, Yu D, Zheng C, Wang Y, Cai L, Guo J, Song W, Ji L. Ecophysiological Analysis of Mangrove Seedlings Kandelia obovata Exposed to Natural Low Temperature at Near 30°N. Journal of Marine Science and Engineering. 2019; 7(9):292. https://doi.org/10.3390/jmse7090292
Chicago/Turabian StyleWang, Zhen, Dongling Yu, Chunfang Zheng, Yaning Wang, Lu Cai, Jian Guo, Wendong Song, and Lili Ji. 2019. "Ecophysiological Analysis of Mangrove Seedlings Kandelia obovata Exposed to Natural Low Temperature at Near 30°N" Journal of Marine Science and Engineering 7, no. 9: 292. https://doi.org/10.3390/jmse7090292
APA StyleWang, Z., Yu, D., Zheng, C., Wang, Y., Cai, L., Guo, J., Song, W., & Ji, L. (2019). Ecophysiological Analysis of Mangrove Seedlings Kandelia obovata Exposed to Natural Low Temperature at Near 30°N. Journal of Marine Science and Engineering, 7(9), 292. https://doi.org/10.3390/jmse7090292