Measurements and Analysis of Primary Ship Waves in the Stockholm Archipelago, Sweden
Abstract
:1. Introduction
2. Ship Waves
2.1. Empirical Equations for Drawdown Height
2.2. Empirical Equations for Squat
3. Field Measurements
3.1. Study Site: Furusund Navigational Fairway
3.2. Experimental Setup and Procedure
4. Results
4.1. Overview of Collected Data
4.2. Evaluation of Existing Empirical Equations
4.3. New Predictive Equations
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Notation |
Ac = cross-sectional area of navigational channel (m2) |
As = submerged cross section of ship (m2) |
B = width of the ship (m) |
c = wave celerity (m/s) |
CB = ship block coefficient (-) |
Cs = constant (-) |
D = hydraulic depth (m) |
ds = ship draft (m) |
g = gravitational acceleration constant (m/s2) |
K = constrainment factor (-) |
hT = trench height, from the bottom of a channel to the top of the trench (m) |
L = ship length (m) |
SD = drawdown height (m) |
T = top width of the navigational fairway (m) |
Tp = wave period of primary wave (s) |
U = vessel speed (m/s) |
Uknt = vessel speed in knots (knt) |
V = box volume of ship (B × L × ds) (m3) |
Y = water depth (m) |
x = distance to sailing line (m) |
Appendix B
Appendix B.1. Empirical Equations for Drawdown
Appendix B.2. Empirical Equations for Squat
References
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Kock, E.W.; Stier, A.C.; Sillman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Sorensen, R.M. Prediction of Vessel-Generated Waves with Reference to Vessels Common to the Upper Mississippi River System; ENV Report 4 (1997); US Army Corps of Engineers: Washington, DC, USA, 1997.
- Gabel, F.; Lorenz, S.; Stoll, S. Effects of ship-induced waves on aquatic ecosystems. Sci. Total Environ. 2017, 601–602, 926–939. [Google Scholar] [CrossRef] [PubMed]
- De Roo, S.; Troch, P. Field monitoring of ship wave action on environmentally friendly bank protection in a confined waterway. J. Waterw. Port Coast. Ocean Eng. 2013, 139, 527–534. [Google Scholar] [CrossRef]
- David, C.G.; Roeber, V.; Goseberg, N.; Schlurmann, T. Generation and propagation of ship-borne waves—Solutions from a Boussinesq-type model. Coast. Eng. 2017, 127, 170–187. [Google Scholar] [CrossRef] [Green Version]
- Gharbi, S.; Valkov, G.; Hamdi, S.; Nistor, I. Numerical and field study of ship-induced waves along the St. Lawrence Waterway, Canada. Nat. Hazards 2010, 54, 605–621. [Google Scholar] [CrossRef]
- MPC de Jong, D.; Roelvink, S.P.; Reijmerink, C. Breederveld, Numerical modelling of passing-ship effects in complex geometries and on shallow water. In Proceedings of the PIANC: Smart Rivers 2013, Leige, Belgium and Maastricht, The Netherlands, 23–27 September 2013. [Google Scholar] [CrossRef]
- Osborne, P.D.; Macdonald, N.; De Waal, N. Full-scale Measurements and Impact Studies With High Speed Foil-Assisted Catamarans in a Wake Sensitive Area. In Proceedings of the 10th International Conference on Fast Sea Transportation FAST 2009, Athens, Greece, 5–8 October 2009. [Google Scholar]
- Kriebel, D.; Seelig, W.; Judge, C. Development of a Unified Description of Ship-Generated Waves. In Proceedings of the U.S. Section PIANC Annual Meeting, Roundtable, and Technical Workshops (CD-ROM), PIANC USA, Alexandria, VA, USA, 2003. [Google Scholar]
- Maynord, S. Return Velocity and Drawdown in Navigable Waterways; Technical Report HL-96-7; US Army Corps of Engineers: Vicksburg, MS, USA, 1996.
- Schijf, J.B. Protection of Embankments and Bed in Inland and Maritime Waters, and in Overflow or Weirs. In XVII International Navigation Congress, Lisbon, Section I. Lisbon; PIANC: Brussels, Belgium, 1949; pp. 61–78. [Google Scholar]
- Bertram, V. Practical Ship Hydrodynamics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2000. [Google Scholar] [CrossRef]
- Schiereck, G. Introduction to Bed, Bank and Shore Protection, 1st ed.; Delft University Press: Delft, The Netherlands, 2001. [Google Scholar]
- Gelencser, G. Drawdown Surge and Slope Protection, Experimental Results. In 24th International Navigation Congress; Leningrad, Soviet Union; PIANC: Brussels, Belgium, 1977; pp. 21–40. [Google Scholar]
- Göransson, G.; Larson, M.; Althage, J. Ship-Generated Waves and Induced Turbidity in the Göta Älv River in Sweden. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 3. [Google Scholar] [CrossRef]
- Herbich, J.B.; Schiller, R. Surges and Waves Generated by Ships in a Constricted Channel. In Proceedings of the 19th International Conference on Coastal Engineering, Houston, TX, USA, 3–7 September 1984; pp. 3213–3226. [Google Scholar]
- Bhowmik, N.G.; Demissie, M.; Guo, C.Y. Waves and Drawdown Generated by River Traffic on the Illinois and Mississippi Rivers; University of Illinois Water Resources Center: Champaign, IL, USA, 1981. [Google Scholar]
- Parnell, K.E.; Soomere, T.; Zaggia, L.; Rodin, A.; Lorenzetti, G.; Rapaglia, J.; Scarpa, G.M. Ship-induced solitary Riemann waves of depression in Venice Lagoon. Phys. Lett. Sect. A 2015, 379, 555–559. [Google Scholar] [CrossRef]
- Jansen, P.P.; Schijf, J.B. Inland Navigation. In Proceedings of the XVIIIth International Navigation Congress, Rome, Italy, 1953; pp. 175–197. [Google Scholar]
- Briggs, M.; Vantorre, M.; Uliczka, K.; Debaillon, P. Chapter 26 Prediction of Squat for Underkeel Clearance. In Handbook of Coastal and Ocean Engineering; Young, Y.C., Ed.; World Scientific: Los Angeles, CA, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Thiele, A. Schiffswiderstand af Canalen. Zent. Bauverwalt. 1901, 56, 345–347. [Google Scholar]
- Gates, E.T.; Herbich, J.B. Mathematical Model to Predict the Behavior of Deep-Draft Vessels in Restricted Waterways, Ocean Engineering Program; TAMU-SG-77-206, Report No. 200; Texas A&M University: Dallas, TX, USA, 1977. [Google Scholar]
- Hochstein, A. Navigation Use of Industrial Canals; Water Transportation, Moscow Publishing House: Moscow, Russia, 1967. [Google Scholar]
- Hochstein, A.; Adams, C. Influence of vessel movements on stability of restricted channels. J. Waterw. Port Coast. Ocean Eng. 1989, 115, 444–465. [Google Scholar] [CrossRef]
- Dand, I.W.; White, W.R. Design of Navigation Canals. In 2nd Symposium, Aspects of Navigability of Constraint Waterways; Including Harbour Entrances: Delft, The Netherlands, 1978; pp. 1–9. [Google Scholar]
- CIRIA; CUR; CETMEF. The Rock Manual: The Use of Rock in Hydraulic Engineering, 2nd ed.; No. C683; CIRA: London, UK, 2007. [Google Scholar]
- Tuck, E.O. Shallow-water flows past slender bodies. J. Fluid Mech. 1966, 26, 81–95. [Google Scholar] [CrossRef]
- Hooft, J.P. The behaviour of a ship in head waves at restricted water depths. Int. Shipbuild. Prog. 1974, 21, 367–390. [Google Scholar] [CrossRef]
- Huuska, O. The Evaluation of Underkeel Clearances in Finnish Waterways; Report No. 9; University of Technology, Ship Hydrodynamics Laboratory: Helsinki, Finland, 1976. [Google Scholar]
- Guliev, U.M. On Squat Calculations for Vessels Going in Shallow Water and Through Channels. PIANC Bull. 1971, 1, 17–20. [Google Scholar]
- ICORELS (International Comission of Reception of Large Ships). Report of Working Group IV, PIANC Bulletin No. 35; Supplement; PIANC: Brussels, Belgium, 1980. [Google Scholar]
- Barrass, C.B. The phenomen of ship squat. Int. Shipbuild. Prog. 1979, 26, 44–47. [Google Scholar] [CrossRef]
- Barrass, C.B. Ship squat—A reply. Nav. Archit. November 1981, 268–272. [Google Scholar]
- Yoshimura, Y. Mathematical Model for the Manoeuvring Ship Motion in Shallow Water. J. Kansai Soc. Nav. 1986, 211, 115–126. [Google Scholar]
- Römisch, K. Empfehlungen zur Bemessung von Hafeneinfahrten. In Wasserbauliche Mitteilungen der Technischen Universit at Dresden, Heft 1; Technischen Universit Dresden: Dresden, Germany, 1989; pp. 39–63. [Google Scholar]
- Eryuzlu, N.E.; Cao, Y.L.; D’Agnolo, F. Underkeel Requirements for Large Vessels in Shallow Waterways. In Proceedings of the 28th International Navigation Congeress, Sevilla, Spain, 22–27 May 1994; PIANC: Brussels, Belgium; pp. 17–25. [Google Scholar]
- Forsberg, M. Ruttval i Stockholms Skärgård—En Fallstudie om Ruttval i Furusunds- och Sandhamnsleden; Chalmers University of Technology: Gothenburg, Sweden, 2017. [Google Scholar]
- Granath, L. Stranderosionsrisker i Samband med Anlöp av “Navigator of the Seas”; Swedish Maritime Administration, Ports of Stockholm: Stockholm, Sweden, 2007.
- Daleke, O.; Hedström, H.; Nissar, K. Fartygstrafikens Miljöeffekter i Skärgården (No. 303); Länsstyrelsen i Stockholms län: Stockholm, Sweden, 1989.
- Hedén, M.; Sannel, B. Vass som Indikator på Stranderosion Längs Farled i Stockholms Skärgård (No. 1992:9); Länsstyrelsen i Stockholms län: Stockholm, Sweden, 1992.
- Granath, L. Farledsstränders Erosionskänslighet—Inventering av Strandtyper och skador i Stockholms Skärgård; No. Rapport 1992:10; Department of Physical Geography, Stockholm University: Stockholm, Sweden, 1992. [Google Scholar]
- Granath, L. Erosionsutvecklingen i Furusundsleden 2015; Swedish Transport Administration, Swedish Maritime Administration, Ports of Stockholm: Stockholm, Sweden, 2015.
- Granath, L. Vågmätningar i Furusundsleden 2014—Utredning om Vågbildning och Vågenergier från olika Fartygskategorier; Swedish Transport Administration, Swedish Maritime Administration, Ports of Stockholm: Stockholm, Sweden, 2015.
- Larson, M.; Almström, B. Varying Drawdown and Return Velocity around Ships in Restricted Waterways. Technical Note (in Preparation). J. Waterw. Port Coastal Ocean Eng. 2020. [Google Scholar]
- Matviyenko, O.V.; Daneyko, O.I.; Moreva, T.A. Free Surface form Determination in Flow around Bridge Piers, Vestnik; NN 1-4: 2013; Tomsk State University of Architecture and Building: Tomsk, Russia, 2013; pp. 43–48. [Google Scholar]
Category of Ship | No. of Primary Waves >5 cm | Ship Draft (m) | Ship Beam (m) | Ship Length (m) | Ship Speed (knt) | Distance from Shore (m) | Drawdown Height (m) | Wave Period (s) |
---|---|---|---|---|---|---|---|---|
A1: Passenger ship; length <200 m | 242 | 6.3 (4.6–6.8) | 28 (20–33) | 176 (154–193) | 10.5 (8.8–12.5) | 170 (130–275) | 0.10 (0.05–0.24) | 46 (24–87) |
A2: Passenger ship; length 200–250 m | 191 | 6.8 (6.3–7.1) | 31 (29–32) | 211 (203–218) | 10.9 (8.6–12.3) | 169 (141–250) | 0.15 (0.05–0.32) | 46 (24–74) |
A3: Passenger ship; length >250 m | 32 | 8.0 (7.2–8.9) | 36 (32–38) | 281 (252–317) | 9.9 (8.8–10.7) | 164 (145–200) | 0.17 (0.05–0.29) | 57 (34–81) |
C: Tanker ship | 1 | 8.0 | 24 | 170 | 9.1 | 162 | 0.07 | 42 |
Spearman Rank Correlation Coefficient | ||||||||
---|---|---|---|---|---|---|---|---|
Beam | Distance | Draft | Length | Speed | Cross-Section | Volume | Drawdown Height | |
Drawdown height | 0.39 | −0.53 | 0.23 | 0.51 | 0.13 | 0.26 | 0.46 | - |
Wave period | 0.32 | 0.32 | 0.43 | 0.18 | −0.40 | 0.42 | 0.27 | −0.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almström, B.; Larson, M. Measurements and Analysis of Primary Ship Waves in the Stockholm Archipelago, Sweden. J. Mar. Sci. Eng. 2020, 8, 743. https://doi.org/10.3390/jmse8100743
Almström B, Larson M. Measurements and Analysis of Primary Ship Waves in the Stockholm Archipelago, Sweden. Journal of Marine Science and Engineering. 2020; 8(10):743. https://doi.org/10.3390/jmse8100743
Chicago/Turabian StyleAlmström, Björn, and Magnus Larson. 2020. "Measurements and Analysis of Primary Ship Waves in the Stockholm Archipelago, Sweden" Journal of Marine Science and Engineering 8, no. 10: 743. https://doi.org/10.3390/jmse8100743
APA StyleAlmström, B., & Larson, M. (2020). Measurements and Analysis of Primary Ship Waves in the Stockholm Archipelago, Sweden. Journal of Marine Science and Engineering, 8(10), 743. https://doi.org/10.3390/jmse8100743