Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mesocosm Experiments
2.2. PAH Extraction and Analysis from the Aggregates
2.3. PAH Extraction and Analysis from Water Samples
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crone, T.J.; Tolstoy, M. Magnitude of the 2010 Gulf of Mexico oil leak. Science 2010, 330, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemas, V. Tracking oil slicks and predicting their trajectories sing remote sensors and models:case studies of the Sea Princess and Deepwater Horizon oil spills. J. Coast. Res. 2010, 26, 789–797. [Google Scholar]
- The Federal Integracy Solutions Group (TFISG); Oil Budget Calculator Science and Engineering Team; National Oceanic and Atmospheric Administration (NOAA); U.S. Geological Survey (USGS); National Institute of Standards and Technology (NIST). Oil Budget Calculator Deepwater Horizon; Technical Documentation and Report to the National Incident Command; The Federal Integracy Solutions Group (TFISG); Oil Budget Calculator Science and Engineering Team: Washington, DC, USA, 2010. Available online: http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf (accessed on 21 October 2019).
- Camilli, R.; Reddy, C.M.; Yoerger, D.R.; VanMooy, B.A.S.; Jakuba, M.V.; Kinsey, J.C. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 2010, 330, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.M.; Arey, J.S.; Seewald, J.S.; Sylva, S.P.; Lemkau, K.L.; Nelson, R.K.; Carmichael, C.A.; McIntyre, C.; Fenwick, J.; Ventura, G.T.; et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2012, 109, 20229–20234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neff, J.M.; Stout, S.A.; Gunster, D.G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazard. Integr. Environ. Assess. Manag. 2005, 1, 22–33. [Google Scholar] [CrossRef]
- Dominguez, J.J.; Chien, M.-F.; Inoue, C. Enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere of sudangrass (Sorghum × drummondii). Chemosphere 2019, 234, 789–795. [Google Scholar] [CrossRef]
- Dominguez, J.J.; Chien, M.-F.; Inoue, C. Hydroponic approach to assess rhizodegradation by sudangrass (Sorghum × drummondii) reveals pH- and plant age-dependent variability in bacterial degradation of polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 2019, 387, 121695. [Google Scholar] [CrossRef]
- ATSDR. Toxicology Profile for Polyaromatic Hydrocarbons; ATSDR’s Toxicological Profiles on CD-ROM; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Xia, K.; Hagood, G.; Childers, C.; Atkins, J. Polycyclic aromatic hydrocarbons (PAHs) in Mississippi seafood from areas affected by the Deepwater Horizon oil spill. Environ. Sci. Technol. 2012, 46, 5310–5318. [Google Scholar] [CrossRef]
- Turner, R.E.; Overton, E.B.; Meyer, B.M.; Miles, M.S.; Hooper-Bui, L. Changes in the concentration and relative abundance of alkanes and PAHs from the Deepwater Horizon oiling of coastal marshes. Mar. Pollut. Bull. 2014, 86, 291–297. [Google Scholar] [CrossRef]
- Brooks, G.R.; Larson, R.A.; Schwing, P.T.; Romero, I.; Moore, C.; Reichart, G.-J.; Jilbert, T.; Chanton, J.P.; Hastings, D.W.; Overholt, W.A.; et al. Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS ONE 2015, 10, e0132341. [Google Scholar] [CrossRef] [Green Version]
- Murawski, S.A.; Fleeger, J.W.; Patterson, W.F.; Hu, C.; Daly, K.L.; Romero, I.; Toro-Farmer, G. How did the Deepwater Horizon oil spill affect coastal and continental shelf ecosystems of the Gulf of Mexico? Oceanography 2015, 29, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Wade, T.L.; Sericano, J.L.; Sweet, S.T.; Knap, A.H.; Guinasso, N.L. Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident. Mar. Pollut. Bull. 2016, 103, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.C.; Schwing, P.T.; Brooks, G.R.; Larson, R.A.; Hastings, D.W.; Ellis, G.; Goddard, E.; Hollander, D.J. Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon Blowout in the Northeast Gulf of Mexico. PLoS ONE 2015, 10, e0128371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, I.C.; Sutton, T.; Carr, B.; Quintana-Rizzo, E.; Ross, S.W.; Hollander, D.J.; Torres, J.J. Decadal assessment of polycyclic aromatic hydrocarbons in mesopelagic fishes from the Gulf of Mexico reveals exposure to oil-derived sources. Environ. Sci. Technol. 2018, 52, 10985–10996. [Google Scholar] [CrossRef] [PubMed]
- Stout, S.A.; Payne, J.R. Macondo oil in deep-sea sediments: Part 1—Sub-sea weathering of oil deposited on the seafloor. Mar. Pollut. Bull. 2016, 108, 365–380. [Google Scholar] [CrossRef]
- Stout, S.A.; Payne, J.R. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill. Mar. Pollut. Bull. 2016, 111, 186–202. [Google Scholar] [CrossRef]
- Passow, U.; Ziervogel, K.; Asper, V.; Diercks, A. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ. Res. Lett. 2012, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Daly, K.L.; Passow, U.; Chanton, J.; Hollander, D. Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon Oil spill. Anthropocene 2016, 13, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Brakstad, O.G.; Lewis, A.; Beegle-Krause, C.J. A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Mar. Pollut. Bull. 2018, 135, 346–356. [Google Scholar] [CrossRef]
- Passow, U.; Hetland, R.D. What happened to all of the oil? Oceanography 2016, 29, 88–95. [Google Scholar] [CrossRef] [Green Version]
- White, H.K.; Hsing, P.-Y.; Cho, W.; Shank, T.M.; Cordes, E.E.; Quattrini, A.M.; Nelson, R.K.; Camilli, R.; Demopoulos, A.W.J.; German, C.R.; et al. Impact of the Deepwater horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proc. Natl. Acad. Sci. USA 2012, 109, 20303–20308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentine, D.L.; Fisher, G.B.; Bagby, S.C.; Nelson, R.K.; Reddy, C.M.; Sylva, S.P.; Woo, M.A. Fallout plume of submerged oil from Deepwater Horizon. Proc. Natl. Acad. Sci. USA 2014, 111, 15906–15911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanton, J.; Zhao, T.; Rosenheim, B.E.; Joye, S.; Bosman, S.; Brunner, C. Using natural abundance radiocarbon to trace the flux of petrocarbon to the sea floor following the Deepwater Horizon oil spill. Environ. Sci. Technol. 2015, 49, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.C.; Toro-Farmer, G.; Diercks, A.R.; Schwing, P.; Muller-Karger, F.; Murawski, S.; Hollander, D.J. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ. Pollut. 2017, 228, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, S.; Beaver, M.; Wozniak, A.S.; Obeid, W.; Lin, Y.; Wade, T.L.; Schwehr, K.A.; Lin, P.; Sun, L.; et al. Decreased sedimentation efficiency of petro- and non-petro-carbon caused by a dispersant for Macondo surrogate oil in a mesocosm simulating a coastal microbial community. Mar. Chem. 2018, 206, 34–43. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, S.; Beaver, M.; Lin, P.; Sun, L.; Doyle, S.M.; Sylvan, J.B.; Wozniak, A.S.; Hatcher, P.G.; Kaiser, K.; et al. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. 2018, 206, 52–61. [Google Scholar] [CrossRef]
- Burd, A.B.; Chanton, J.P.; Daly, K.L.; Gilbert, S.; Passow, U.; Quigg, A. The science behind marine-oil snow and MOSFFA: Past, present, and future. Prog. Oceanogr. 2020, 187, 102398. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Erdner, D.L.; Liu, Z. Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Mar. Pollut. Bull. 2015, 95, 265–272. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Thyng, K.; Plunkett, S.; Erdner, D.L.; Liu, Z. The tarballs on Texas beaches following the 2014 Texas City “Y” Spill: Modeling, chemical, and microbiological studies. Mar. Pollut. Bull. 2016, 109, 236–244. [Google Scholar] [CrossRef]
- Liu, J.; Bacosa, H.P.; Liu, Z. Potential environmental factors affecting oil-degrading bacterial populations in deep and surface waters of the northern Gulf of Mexico. Front. Microbiol. 2017, 7, 2131. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Chiu, M.; Xu, C.; Lin, P.; Schwehr, K.; Bacosa, H.; Kamalanathan, M.; Quigg, A.; Chin, W.-C.; Santschi, P.H. The effects of sunlight on the composition of exopolymeric substances and subsequent aggregate formation during oil spills. Mar. Chem. 2018, 203, 49–54. [Google Scholar] [CrossRef]
- Quigg, A.; Passow, U.; Chin, W.-C.; Xu, C.; Doyle, S.; Bretherton, L.; Kamalanathan, M.; Williams, A.K.; Sylvan, J.B.; Finkel, Z.V.; et al. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 2016, 1, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Bacosa, H.P.; Kamalanathan, M.; Chiu, M.H.; Tsai, S.M.; Sun, L.; Labonté, J.M.; Schwehr, K.A.; Hala, D.; Santschi, P.H.; Chin, W.C.; et al. Extracellular polymeric substances (EPS) producing and oil degrading bacteria isolated from the northern Gulf of Mexico. PLoS ONE 2018, 13, e0208406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamalanathan, M.; Chiu, M.-H.; Bacosa, H.; Schwehr, K.; Tsai, S.-M.; Doyle, S.; Yard, A.; Mapes, S.; Vasequez, C.; Bretherton, L.; et al. Role of polysaccharides in diatom Thalassiosira pseudonana and its associated bacteria in hydrocarbon presence. Plant Physiol. 2019, 180, 1898–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Lin, P.; Zhang, S.; Sun, L.; Xing, W.; Schwehr, K.A.; Chin, W.-C.; Wade, T.L.; Knap, A.H.; Hatcher, P.G.; et al. The interplay of extracellular polymeric substances and oil/Corexit to affect the petroleum incorporation into sinking marine oil snow in four mesocosms. Sci. Total Environ. 2019, 693, 133626. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.-F.; Chiu, M.-H.; Vazquez, C.I.; Tsai, Y.-Y.; Le, A.; Wa-Kagiri, A.; Xu, C.; Kamalanathan, M.; Bacosa, H.; Doyle, S.; et al. Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. Mar. Chem. 2020, 223, 103789. [Google Scholar] [CrossRef]
- Schwehr, K.A.; Xu, C.; Chiu, M.-H.; Zhang, S.; Sun, L.; Lin, P.; Beaver, M.; Jackson, C.; Agueda, O.; Bergen, C.; et al. Protein: Polysaccharide ratio in exopolymeric substances controlling the surface tension of seawater in the presence or absence of surrogate Macondo oil with and without Corexit. Mar. Chem. 2018, 206, 84–92. [Google Scholar] [CrossRef]
- Passow, U. Formation of rapidly-sinking, oil-associated marine snow. Deep Sea Res. II 2016, 129, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Ziervogel, K.; McKay, L.; Rhodes, B.; Osburn, C.L.; Dickson-Brown, J.; Arnosti, C.; Teske, A. Microbial activities and dissolved organic matter dynamics in oil-contaminated surface seawater from the Deepwater Horizon oil spill site. PLoS ONE 2012, 7, e34816. [Google Scholar] [CrossRef]
- Fu, J.; Gong, Y.; Zhao, X.; O’Reilly, S.E.; Zhao, D. Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons. Environ. Sci. Technol. 2014, 48, 14392–14399. [Google Scholar] [CrossRef]
- Wirth, M.A.; Passow, U.; Jeschek, J.; Hand, I.; Schulz-Bull, D.E. Partitioning of oil compounds into marine oil snow: Insights into prevailing mechanisms and dispersant effects. Mar. Chem. 2018, 206, 62–73. [Google Scholar] [CrossRef]
- Genzer, J.L.; Kamalanathan, M.; Bretherton, L.; Hillhouse, J.; Xu, C.; Santschi, P.H.; Quigg, A. Diatom aggregation when exposed to crude oil and chemical dispersant: Potential impacts of ocean acidification. PLoS ONE 2020, 15, e0235473. [Google Scholar] [CrossRef] [PubMed]
- Passow, U.; Sweet, J.; Quigg, A. How the dispersant Corexit impacts the formation of sinking marine oil snow. Mar. Pollut. Bull. 2017, 125, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Wade, T.L.; Shi, D.; Gold-Bouchot, G.; Morales-McDevitt, M.E.; Sweet, S.T.; Bera, G.; Wang, B.; Quigg, A.; Knap, A.H. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Heliyon 2017, 3, e00419. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Obeid, W.; Wozniak, A.S.; Xu, C.; Zhang, S.; Santschi, P.H.; Quigg, A. Identifying oil/marine snow associations in mesocosm simulations of the Deepwater Horizon oil spill event using solid-state 13 C NMR spectroscopy. Mar. Pollut. Bull. 2018, 126, 159–165. [Google Scholar] [CrossRef]
- Doyle, S.M.; Whitaker, E.A.; de Pascuale, V.; Wade, T.L.; Knap, A.H.; Santschi, P.H.; Quigg, A.; Sylvan, J.B. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and the dispersant corexit. Front. Microbiol. 2018, 689, 9. [Google Scholar] [CrossRef] [Green Version]
- Kamalanathan, M.; Xu, C.; Schwehr, K.; Bretherton, L.; Beaver, M.; Doyle, S.M.; Genzer, J.; Hillhouse, J.; Sylvan, J.B.; Santschi, P.; et al. Extracellular enzyme activity profile in a chemically enhanced water accommodated fraction of surrogate oil: Toward understanding microbial activities after the Deepwater Horizon Oil Spill. Front. Microbiol. 2018, 9, 798. [Google Scholar] [CrossRef]
- Bretherton, L.; Kamalanathan, M.; Genzer, J.; Hillhouse, J.; Setta, S.; Liang, Y.; Brown, C.M.; Xu, C.; Sweet, J.; Passow, U.; et al. Response of natural phytoplankton communities exposed to crude oil and chemical dispersants during a mesocosm experiment. Aquat. Toxicol. 2019, 206, 43–53. [Google Scholar] [CrossRef]
- Wozniak, A.S.; Prem, P.M.; Obeid, W.; Quigg, A.; Xu, C.; Santschi, P.H.; Schwehr, K.A.; Hatcher, P.G. Rapid degradation of oil in mesocosm simulations of marine oil snow events. Environ. Sci. Technol. 2019, 53, 3441–3450. [Google Scholar] [CrossRef]
- Wade, T.L.; Sweet, S.T.; Sericano, J.L.; Guinasso, N., Jr.; Diercks, A.-R.; Highsmith, R.C.; Asper, V.; Joung, D.; Shiller, A.M.; Lohrenz, S.E.; et al. Analyses of water samples from the Deepwater Horizon oil spill: Documentation of the subsurface plume. Geophys. Monogr. Ser. 2011, 195, 77–82. [Google Scholar]
- Bacosa, H.P.; Erdner, D.L.; Rosenheim, B.E.; Shetty, P.; Seitz, K.W.; Baker, B.J.; Liu, Z. Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil. ISME J. 2018, 12, 2532–2543. [Google Scholar] [CrossRef] [PubMed]
- Cullen, J.A.; Marshall, C.D.; Hala, D. Integration of multi-tissue PAH and PCB burdens with biomarker activity in three coastal shark species from the northwestern Gulf of Mexico. Sci. Total Environ. 2019, 650, 1158–1172. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.D.; Fingas, M.; Lambert, P.; Zeng, G.; Yang, C.; Hollebone, B. Characterization and identification of the Detroit River mystery oil spill (2002). J. Chromatogr. A 2004, 1038, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Zhang, Z.; Inole, C.; Li, G. Coordination of in phenanthrene biodegradation; pyruvate as microbial demarcation. Bull. Environ. Contam. Toxicol. 2010, 85, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, X.; Liang, Y.; Li, G.; Zhou, J. Microbial functional genes reveal selection of microbial community by PAHs in polluted soils. Environ. Chem. Lett. 2013, 11, 11–17. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Suto, K.; Inoue, C. Degradation potential and microbial community structure of heavy-oil enriched microbial consortia from mangrove sediments in Okinawa, Japan. J. Environ. Sci. Health A 2013, 48, 835–846. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Inoue, C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J. Hazard. Mater. 2015, 283, 689–697. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Inoue, C. Heavy oil degrading Burkholderia and Pseudomonas strains: Insights on the degradation potential of isolates and microbial consortia. Palawan Sci. 2020, 12, 74–89. [Google Scholar]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.K.; Bacosa, H.P.; Quigg, A. The impact of dissolved inorganic nitrogen and phosphorus on responses of microbial plankton to the Texas City “Y” oil spill in Galveston Bay, Texas (USA). Mar. Pollut. Bull. 2017, 121, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Steichen, J.L.; Labonté, J.M.; Windham, R.; Hala, D.; Kaiser, K.; Setta, S.; Faulkner, P.; Bacosa, H.; Yan, G.; Kamalanathan, M.; et al. Microbial, physical, and chemical changes in Galveston Bay following an extreme flooding event, Hurricane Harvey. Front. Mar. Sci. 2020, 7, 186. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Steichen, J.; Kamalanathan, M.; Windham, R.; Lubguban, A.; Labonté, J.M.; Kaiser, K.; Hala, D.; Santschi, P.H.; Quigg, A. Polycyclic aromatic hydrocarbons (PAHs) and putative PAH-degrading bacteria in Galveston Bay, TX (USA), following Hurricane Harvey (2017). Environ. Sci. Pollut. Res. 2020, 27, 34987–34999. [Google Scholar] [CrossRef] [PubMed]
- Loh, A.; Yim, U.H.; Ha, S.Y.; An, J.G. A preliminary study on the role of suspended particulate matter in the bioavailability of oil-derived polycyclic aromatic hydrocarbons to oysters. Sci. Total Environ. 2018, 643, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Fu, J.; Liu, W.; Fu, K.; O’Reilly, S.E.; Zhao, D. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components. Mar. Pollut. Bull. 2017, 114, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.L.; Maiti, K.; Bosu, S.; Jones, P.R. 234Th as a tracer of vertical transport of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico. Mar. Pollut. Bull. 2016, 107, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Takada, H.; Toyoda, K.; Yoshida, A.; Shibata, A.; Nomura, H.; Wada, M.; Nishimura, M.; Okamoto, K.; Ohwada, K. Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm. Mar. Pollut. Bull. 2003, 47, 105–113. [Google Scholar] [CrossRef]
- Adhikari, P.L.; Maiti, K.; Overton, E.B.; Rosenheim, B.E.; Marx, B.D. Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments. Environ. Pollut. 2016, 212, 413–423. [Google Scholar] [CrossRef]
- Means, J.C.; Wood, S.G.; Hasset, J.J.; Banwart, W.L. Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 1980, 14, 1524–1528. [Google Scholar] [CrossRef]
- Loh, A.; Shankar, R.; Ha, S.Y.; An, J.G.; Yim, U.H. Stability of mechanically and chemically dispersed oil: Effect of particle types on oil dispersion. Sci. Total Environ. 2020, 716, 135343. [Google Scholar] [CrossRef]
- Loh, A.; Yim, U.H. A review of the effects of particle types on oil-suspended particulate matter aggregate formation. Ocean Sci. J. 2016, 51, 535–548. [Google Scholar] [CrossRef]
- Stoffyn-Egli, P.; Lee, K. Formation and characterization of oil-mineral aggregates. Spill Sci. Technol. Bull. 2002, 8, 31–44. [Google Scholar] [CrossRef]
- Gustitus, S.A.; Clement, T.P. Formation, fate, and impacts of microscopic and macroscopic oil-sediment residues in nearshore marine environments: A critical review. Rev. Geophys. 2017, 55, 1130–1157. [Google Scholar] [CrossRef]
- Passow, U.; Sweet, J.; Francis, S.; Xu, C.; Dissanayake, A.L.; Lin, Y.Y.; Santschi, P.H.; Quigg, A. Incorporation of oil into diatom aggregates. Mar. Ecol. Prog. Ser. 2019, 612, 65–86. [Google Scholar] [CrossRef]
- National Research Council. Oil Spill Dispersants; Efficacy and Effects; The National Academy Press: Washington, DC, USA, 2005. [Google Scholar]
- Zhao, X.; Gong, Y.Y.; O’Reilly, S.E.; Zhao, D.Y. Effects of oil dispersant on solubilization, sorption and desorption of polycyclic aromatic hydrocarbons in sediment–seawater systems. Mar. Pollut. Bull. 2015, 92, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhao, X.; Cai, Z.; O’Reilly, S.E.; Hao, X.; Zhao, D. A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Mar. Pollut. Bull. 2014, 79, 16–33. [Google Scholar] [CrossRef]
- Arnosti, C.; Ziervogel, K.; Yang, T.; Teske, A. Oil-derived marine aggregates—Hotspots of polysaccharide degradation by specialized bacterial communities. Deep Sea Res. Part II 2016, 129, 179–186. [Google Scholar] [CrossRef]
- Ziervogel, K.; Joye, S.B.; Kleindienst, S.; Malkin, S.Y.; Passow, U.; Steen, A.D.; Arnosti, C. Polysaccharide hydrolysis in the presence of oil and dispersants: Insights into potential degradation pathways of exopolymeric substances (EPS) from oil-degrading bacteria. Elem. Sci. Anthropos. 2019, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Bacosa, H.P.; Liu, Z.; Erdner, D.L. Natural sunlight shapes crude oil-degrading bacterial communities in northern Gulf of Mexico surface waters. Front. Microbiol. 2015, 6, 1325. [Google Scholar] [CrossRef] [Green Version]
- Santschi, P.H.; Xu, C.; Schwehr, K.A.; Lin, P.; Sun, L.; Chin, W.-C.; Kamalanathan, M.; Bacosa, H.P.; Quigg, A. Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their ‘stickiness’ and aggregation propensity? Mar. Chem. 2020, 218, 103734. [Google Scholar] [CrossRef]
- Kleindienst, S.; Seidel, M.; Ziergovel, K.; Grim, S.; Loftis, K.; Harrison, S.; Malkin, S.Y.; Perkins, M.J.; Field, J.; Sogin, M.L.; et al. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc. Natl. Acad. Sci. USA 2015, 112, 14900–14905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overholt, W.A.; Marks, K.P.; Romero, I.C.; Hollander, D.J.; Snell, T.W.; Kostka, J.E. Hydrocarbon-degrading bacteria exhibit a species-specific response to dispersed oil while moderating ecotoxicity. Appl. Environ. Microbiol. 2016, 82, 518–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, P.L.; Maiti, K.; Overton, E.B. Vertical fluxes of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico. Mar. Chem. 2015, 168, 60–68. [Google Scholar] [CrossRef]
- Parinos, C.; Gogou, A.; Bouloubassi, I.; Stavrakakis, S.; Plakidi, E.; Hatzianestis, I. Sources and downward fluxes of polycyclic aromatic hydrocarbons in the open southwestern Black Sea. Org. Geochem. 2013, 57, 65–75. [Google Scholar] [CrossRef]
- Bouloubassi, I.; Méjanelle, L.; Pete, R.; Fillaux, J.; Lorre, A.; Point, V. Point PAH transport by sinking particles in the open Mediterranean Sea: A 1 year sediment trap study. Mar. Pollut. Bull. 2006, 52, 560–571. [Google Scholar] [CrossRef]
- Dachs, J.; Bayona, J.M.; Ittekkot, I.; Albaigés, J. Monsoon-driven vertical fluxes of organic pollutants in the western Arabian Sea. Environ. Sci. Technol. 1999, 33, 3949–3956. [Google Scholar] [CrossRef]
- Raoux, C.; Bayona, J.M.; Miguel, J.C.; Teyssie, J.L.; Fowler, S.W.; Albaiges, J. Particulate fluxes of aliphatic and aromatic hydrocarbons in near-shore waters to the Northwestern Mediterranean Sea, and the effect of continental runoff. Estuar. Coast. Shelf Sci. 1999, 48, 605–616. [Google Scholar] [CrossRef]
- Pettersen, H.; Neaff, C.; Broman, D. Impact of PAH outlets from an oil refinery on the receiving water area—sediment trap fluxes and multivariate statistical analysis. Mar. Pollut. Bull. 1997, 34, 85–95. [Google Scholar] [CrossRef]
- Bacosa, H.; Suto, K.; Inoue, C. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int. Biodeterior. Biodegr. 2010, 64, 702–710. [Google Scholar] [CrossRef]
- Schwing, P.T.; Romero, I.C.; Brooks, G.R.; Hastings, D.W.; Larson, R.A.; Hollander, D.J. A decline in benthic foraminifera following the Deepwater Horizon event in the northeastern Gulf of Mexico. PLoS ONE 2015, 10, e0120565. [Google Scholar] [CrossRef]
- Gemmell, B.J.; Bacosa, H.P.; Liu, Z.; Buskey, E.J. Can gelatinous zooplankton influence the fate of crude oil in marine environments. Mar. Pollut. Bull. 2016, 113, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Seeley, M.E.; Wang, Q.; Bacosa, H.; Rosenheim, B.E.; Liu, Z. Environmental petroleum pollution analysis using ramped pyrolysis-gas chromatography-mass spectrometry. Org. Chem. 2018, 124, 180–189. [Google Scholar] [CrossRef]
- Van Eenennaam, J.S.; Rohal, M.; Montagna, P.A.; Radović, J.R.; Oldenburg, T.B.; Romero, I.C.; Murk, A.J.; Foekema, E. Ecotoxicological benthic impacts of experimental oil-contaminated marine snow deposition. Mar. Pollut. Bull. 2019, 141, 164–175. [Google Scholar] [CrossRef] [PubMed]
Treatment/Day | 0 d | 3 d | 15 d |
---|---|---|---|
Control | 0.085 ± 0.025 | 0.081 ± 0.014 | 0.044 ± 0.005 |
WAF | 18.94 ± 11.28 | 0.45 ± 0.53 | 0.042 ± 0.011 |
DCEWAF | 7.37 ± 8.98 | 0.21 ± 0.03 | 0.081 ± 0.035 |
Study Area | ∑PAHs (n) | Concentration (µg/g) | Reference |
---|---|---|---|
Control | 16 | 0.754–2.81 | This study |
WAF | 16 | 4.28–12.01 | This study |
DCEWAF | 16 | 9.36–31.02 | This study |
Southwestern Black Sea (open ocean) | 22 | 0.299–3.54 | [87] |
Mediterranean Sea (open ocean) | 13 | 0.142–0.768 | [88] |
NW Arabia Sea (opean ocean) | 15 | 0.102–0.719 | [89] |
NW Mediterranean (coastal) | 24 | 1.3–7.0 | [90] |
Baltic Sea (coastal) | 18 | 0.55–4.25 | [91] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacosa, H.P.; Kamalanathan, M.; Cullen, J.; Shi, D.; Xu, C.; Schwehr, K.A.; Hala, D.; Wade, T.L.; Knap, A.H.; Santschi, P.H.; et al. Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study. J. Mar. Sci. Eng. 2020, 8, 781. https://doi.org/10.3390/jmse8100781
Bacosa HP, Kamalanathan M, Cullen J, Shi D, Xu C, Schwehr KA, Hala D, Wade TL, Knap AH, Santschi PH, et al. Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study. Journal of Marine Science and Engineering. 2020; 8(10):781. https://doi.org/10.3390/jmse8100781
Chicago/Turabian StyleBacosa, Hernando P., Manoj Kamalanathan, Joshua Cullen, Dawei Shi, Chen Xu, Kathleen A. Schwehr, David Hala, Terry L. Wade, Anthony H. Knap, Peter H. Santschi, and et al. 2020. "Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study" Journal of Marine Science and Engineering 8, no. 10: 781. https://doi.org/10.3390/jmse8100781
APA StyleBacosa, H. P., Kamalanathan, M., Cullen, J., Shi, D., Xu, C., Schwehr, K. A., Hala, D., Wade, T. L., Knap, A. H., Santschi, P. H., & Quigg, A. (2020). Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study. Journal of Marine Science and Engineering, 8(10), 781. https://doi.org/10.3390/jmse8100781