Population Genetic Diversity of Two Marine Gobies (Gobiiformes: Gobiidae) from the North-Eastern Atlantic and the Mediterranean Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. DNA Extraction, Amplification, Sequencing
2.3. Data Analyses
3. Results
3.1. Gobius geniporus
3.2. Gobius cruentatus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pascual, M.; Rives, B.; Schunter, C.; Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 2017, 12, e0176419. [Google Scholar] [CrossRef] [PubMed]
- Coyer, J.A.; Diekmann, O.E.; Serrão, E.A.; Procaccini, G.; Milchakova, N.; Pearson, G.A.; Stam, W.T.; Olsen, J.L. Population genetics of dwarf eelgrass Zostera noltii throughout its biogeographic range. Mar. Ecol. Prog. Ser. 2004, 281, 51–62. [Google Scholar] [CrossRef]
- Riesgo, A.; Taboada, S.; Pérez-Portela, R.; Melis, P.; Xavier, J.R.; Blasco, G.; López-Legentil, S. Genetic diversity, connectivity and gene flow along the distribution of the emblematic Atlanto-Mediterranean sponge Petrosia ficiformis (Haplosclerida, Demospongiae). BMC Evol. Biol. 2019, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Sá-Pinto, A.; Branco, M.S.; Alexandrino, P.B.; Fontaine, M.C.; Baird, S.J.E. Barriers to gene flow in the marine environment: Insights from two common intertidal limpet species of the Atlantic and Mediterranean. PLoS ONE 2012, 7, e50330. [Google Scholar] [CrossRef] [Green Version]
- Borrero-Pérez, G.H.; González-Wangüemert, M.; Marcos, C.; Pérez-Ruzafa, A. Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: The combined effects of historical processes and current oceanographical pattern. Mol. Ecol. 2011, 20, 1964–1975. [Google Scholar] [CrossRef]
- Penant, G.; Aurelle, D.; Feral, J.P.; Chenuil, A. Planktonic larvae do not ensure gene flow in the edible sea urchin Paracentrotus lividus. Mar. Ecol. Prog. Ser. 2013, 480, 155–170. [Google Scholar] [CrossRef]
- Palero, F.; Abelló, P.; Macpherson, E.; Gristina, M.; Pascual, M. Phylogeography of the European spiny lobster (Palinurus elephas): Influence of current oceanographical features and historical processes. Mol. Phylogenet. Evol. 2008, 48, 708–717. [Google Scholar] [CrossRef] [Green Version]
- Reuschel, S.; Cuesta, J.A.; Schubart, C.D. Marine biogeographic boundaries and human introduction along the European coast revealed by phylogeography of the prawn Palaemon elegans. Mol. Phylogenet. Evol. 2010, 55, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, S.; Ugolini, A.; Momtazi, F.; Hou, Z. Tethyan closure drove tropical marine biodiversity: Vicariant diversification of intertidal crustaceans. J. Biogeogr. 2018, 45, 941–951. [Google Scholar] [CrossRef]
- Cimmaruta, R.; Bondanelli, P.; Nascetti, G. Genetic structure and environmental heterogeneity in the European hake (Merluccius merluccius). Mol. Ecol. 2005, 14, 2577–2591. [Google Scholar] [CrossRef]
- Debes, P.V.; Zachos, F.E.; Hanel, R. Mitochondrial phylogeography of the European sprat (Sprattus sprattus L., Clupeidae) reveals isolated climatically vulnerable populations in the Mediterranean Sea and range expansion in the northeast Atlantic. Mol. Ecol. 2008, 17, 3873–3888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magoulas, A.; Castilho, R.; Caetano, S.; Marcato, S.; Patarnello, T. Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Mol. Phylogenet. Evol. 2006, 39, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Patarnello, T.; Volckaert, F.A.M.J.; Castilho, R. Pillars of Hercules: Is the Atlantic-Mediterranean transition a phylogeographical break? Mol. Ecol. 2007, 16, 4426–4444. [Google Scholar] [CrossRef] [PubMed]
- Palumbi, S.R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 1994, 25, 547–572. [Google Scholar] [CrossRef]
- Palumbi, S.R. Marine reserves and ocean neighborhoods: The spatial scale of marine populations and their management. Annu. Rev. Environ. Resour. 2004, 29, 31–68. [Google Scholar] [CrossRef]
- Thiede, J. A Glacial Mediterranean. Nature 1978, 276, 680–683. [Google Scholar] [CrossRef]
- Roveri, M.; Flecker, R.; Krijgsman, W.; Lofi, J.; Lugli, S.; Manzi, V.; Sierro, F.J.; Bertini, A.; Camerlenghi, A.; De Lange, G.; et al. The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Mar. Geol. 2014, 352, 25–58. [Google Scholar] [CrossRef]
- Hsü, K.J.; Ryan, W.B.F.; Cita, M.B. Late miocene desiccation of the Mediterranean. Nature 1973, 242, 240–244. [Google Scholar] [CrossRef]
- Hsü, K.J.; Montadert, L.; Bernoulli, D.; Cita, M.B.; Erickson, A.; Garrison, R.E.; Kidd, R.B.; Mèlierés, F.; Müller, C.; Wright, R. History of the Mediterranean salinity crisis. Nature 1977, 267, 1053–1078. [Google Scholar] [CrossRef]
- Garcia-Castellanos, D.; Villaseñor, A. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 2011, 480, 359–363. [Google Scholar] [CrossRef]
- Carnevale, G.; Longinelli, A.; Caputo, D.; Barbieri, M.; Landini, W. Did the Mediterranean marine reflooding precede the Mio-Pliocene boundary? Paleontological and geochemical evidence from upper Messinian sequences of Tuscany, Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 257, 81–105. [Google Scholar] [CrossRef]
- Domingues, V.S.; Bucciarelli, G.; Almada, V.C.; Bernardi, G. Historical colonization and demography of the Mediterranean damselfish, Chromis chromis. Mol. Ecol. 2005, 14, 4051–4063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carnevale, G.; Landini, W.; Sarti, G. Mare versus Largo-mare: Marine fishes and the Mediterranean environment at the end of the Messinian Salinity Crisis. J. Geol. Soc. London. 2006, 163, 75–80. [Google Scholar] [CrossRef]
- Garcia-Castellanos, D.; Estrada, F.; Jiménez-Munt, I.; Gorini, C.; Fernández, M.; Vergés, J.; De Vicente, R. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 2009, 462, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.B.; Veraguth, I.E. The impact of Pleistocene glaciation across the range of a widespread European coastal species. Mol. Ecol. 2010, 19, 4535–4553. [Google Scholar] [CrossRef] [PubMed]
- Rohling, E.J.; Grant, K.; Bolshaw, M.; Roberts, A.P.; Siddall, M.; Hemleben, C.; Kucera, M. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci. 2009, 2, 500–504. [Google Scholar] [CrossRef]
- Fleming, K.; Johnston, P.; Zwartz, D.; Yokoyama, Y.; Lambeck, K.; Chappell, J. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet. Sci. Lett. 1998, 163, 327–342. [Google Scholar] [CrossRef]
- Essallami, L.; Sicre, M.A.; Kallel, N.; Labeyrie, L.; Siani, G. Hydrological changes in the Mediterranean Sea over the last 30,000 years. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef]
- Almada, V.C.; Oliveira, R.F.; Goncalves, E.J.; Almeida, J.; Santos, R.S.; Wirtz, P. Patterns of diversity of the north-eastern Atlantic blenniid fish fauna (Pisces: Blenniidae). Glob. Ecol. Biogeogr. 2001, 10, 411–422. [Google Scholar] [CrossRef]
- Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.; Halpern, B.S.; Jorge, M.A.; Lombana, A.; Lourie, S.A.; et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 2007, 57, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Zardoya, R.; Castilho, R.; Grande, C.; Favre-Krey, L.; Caetano, S.; Marcato, S.; Krey, G.; Patarnello, T. Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol. Ecol. 2004, 13, 1785–1798. [Google Scholar] [CrossRef] [PubMed]
- Bargelloni, L.; Alarcon, J.A.; Alvarez, M.C.; Penzo, E.; Magoulas, A.; Palma, J.; Patarnello, T. The Atlantic-Mediterranean transition: Discordant genetic patterns in two seabream species, Diplodus puntazzo (Cetti) and Diplodus sargus (L.). Mol. Phylogenet. Evol. 2005, 36, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Charrier, G.; Chenel, T.; Durand, J.D.; Girard, M.; Quiniou, L.; Laroche, J. Discrepancies in phylogeographical patterns of two European anglerfishes (Lophius budegassa and Lophius piscatorius). Mol. Phylogenet. Evol. 2006, 38, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Alvarado Bremer, J.R.; Viñas, J.; Mejuto, J.; Ely, B.; Pla, C. Comparative phylogeography of Atlantic bluefin tuna and swordfish: The combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 2005, 36, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Fricke, R.; Eschmeyer, W.N.; Fong, J.D. Eschemeyer’s Catalog of Fishes. Available online: https://www.researchgate.net/project/Eschmeyers-Catalog-of-Fishes-online (accessed on 12 October 2020).
- Kovačić, M.; Ordines, F.; Schliewen, U.K. A new species of Buenia (Perciformes: Gobiidae) from the Western Mediterranean slope bottoms, the redescription of Buenia jeffreysi and the first Balearic record of Buenia affinis. Zootaxa 2018, 4392, 267–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovačić, M.; Ordines, F.; Ramirez-Amaro, S.; Schliewen, U.K. Gymnesigobius medits (Teleostei: Gobiidae), a new gobiid genus and species from the western Mediterranean slope bottoms. Zootaxa 2019, 4651, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Patzner, R.A.; Van Tassell, J.L.; Kovačić, M.; Kapoor, B.G. The Biology of Gobies; Science Publishers: New York, NY, USA; CRC Press: New York, NY, USA; Taylor & Francis Group: New York, NY, USA, 2011; ISBN 9781578084364. [Google Scholar]
- Kovačić, M.; Šanda, R. A new species of Gobius (Perciformes: Gobiidae) from the Mediterranean Sea and the redescription of Gobius bucchichi. J. Fish Biol. 2016, 88, 1104–1124. [Google Scholar] [CrossRef]
- Engin, S.; Seyhan, D. A new species of Pomatoschistus (Teleostei, Gobiidae): The Mediterranean’s smallest marine fish. J. Fish Biol. 2017, 91, 1208–1223. [Google Scholar] [CrossRef]
- Kovačić, M.; Šanda, R.; Kirinčić, M.; Zanella, D. Geographic distribution of gobies (Gobiidae) in the Adriatic Sea with thirteen new records for its southern part. Cybium 2012, 36, 435–445. [Google Scholar]
- Engin, S.; Irmak, E.; Seyhan, D.; Akdemir, T.; Keskin, A.C. Gobiid fishes of the coastal zone of the Northeastern Aegean Sea. Mar. Biodivers. 2018, 48, 1073–1084. [Google Scholar] [CrossRef]
- Kovačić, M.; Schembri, P.J. Twelve new records of gobies and clingfishes (Pisces: Teleostei) significantly increase small benthic fish diversity of Maltese waters. Mediterr. Mar. Sci. 2019, 20, 287–296. [Google Scholar] [CrossRef]
- Stefanni, S.; Gysels, E.S.; Volckaert, F.A.M.; Miller, P.J. Allozyme variation and genetic divergence in the sand goby, Pomatoschistus minutus (Teleostei: Gobiidae). J. Mar. Biol. Assoc. UK 2003, 83, 1143–1149. [Google Scholar] [CrossRef] [Green Version]
- Stefanni, S.; Thorley, J.L. Mitochondrial DNA phylogeography reveals the existence of an Evolutionarily Significant Unit of the sand goby Pomatoschistus minutus in the Adriatic (Eastern Mediterranean). Mol. Phylogenet. Evol. 2003, 28, 601–609. [Google Scholar] [CrossRef]
- Gysels, E.S.; Hellemans, B.; Patarnello, T.; Volckaert, F.A.M. Current and historic gene flow of the sand goby Pomatoschitus minutus on the European Continental Shelf and in the Mediterranean Sea. Biol. J. Linn. Soc. 2004, 83, 561–576. [Google Scholar] [CrossRef] [Green Version]
- Gysels, E.S.; Hellemans, B.; Pampoulie, C.; Volckaert, F.A.M. Phylogeography of the common goby, Pomatoschistus microps, with particular emphasis on the colonization of the Mediterranean and the North Sea. Mol. Ecol. 2004, 13, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Mejri, R.; Lo Brutto, S.; Hassine, O.K.B.; Arculeo, M. A study on Pomatoschistus tortonesei Miller 1968 (Perciformes, Gobiidae) reveals the Siculo-Tunisian Strait (STS) as a breakpoint to gene flow in the Mediterranean basin. Mol. Phylogenet. Evol. 2009, 53, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Mejri, R.; Arculeo, M.; Ben Hassine, O.K.; Lo Brutto, S. Genetic architecture of the marbled goby Pomatoschistus marmoratus (Perciformes, Gobiidae) in the Mediterranean Sea. Mol. Phylogenet. Evol. 2011, 58, 395–403. [Google Scholar] [CrossRef]
- Boissin, E.; Hoareau, T.B.; Berrebi, P. Effects of current and historic habitat fragmentation on the genetic structure of the sand goby Pomatoschistus minutus (Osteichthys, Gobiidae). Biol. J. Linn. Soc. 2011, 102, 175–198. [Google Scholar] [CrossRef] [Green Version]
- Giovannotti, M.; La Mesa, M.; Caputo, V. Life style and genetic variation in teleosts: The case of pelagic (Aphia minuta) and benthic (Gobius niger) gobies (Perciformes: Gobiidae). Mar. Biol. 2009, 156, 239–252. [Google Scholar] [CrossRef]
- Agorreta, A.; San Mauro, D.; Schliewen, U.; Van Tassell, J.L.; Kovačić, M.; Zardoya, R.; Rüber, L. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 2013, 69, 619–633. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.J. Fishes of the North-eastern Atlantic and the Mediterranean. In Gobiidae; Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J., Tortonese, E., Eds.; Unesco: Paris, France, 1986; pp. 1019–1085. ISBN 92-3-002309-4. [Google Scholar]
- Engin, S.; Turan, D.; Kovačić, M. First record of the red-mouthed goby, Gobius cruentatus (Gobiidae), in the Black Sea. Cybium 2007, 31, 87–88. [Google Scholar]
- Wilkins, H.K.A.; Myers, A.A. Shelter utilization by Gobius cruentatus and Thorogobius ephippiatus (Teleostei: Gobiidae). J. Fish Biol. 1993, 43, 763–773. [Google Scholar] [CrossRef]
- Kovačić, M.; Golani, D. First record of three gobiid species in the Levant. Cybium 2007, 31, 89–91. [Google Scholar]
- Kovačić, M.; Miletić, M.; Papageorgiou, N. A first checklist of gobies from Crete with ten new records. Cybium 2011, 35, 245–253. [Google Scholar]
- Machordom, A.; Doadrio, I. Evidence of a cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Mol. Phylogenet. Evol. 2001, 18, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.; Hazama, K. Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol. Ecol. 1998, 7, 1255–1256. [Google Scholar] [PubMed]
- Šanda, R.; Vukić, J.; Choleva, L.; Křížek, J.; Šedivá, A.; Shumka, S.; Wilson, I.F. Distribution of loach fishes (Cobitidae, Nemacheilidae) in Albania, with genetic analysis of populations of Cobitis ohridana. Folia Zool. 2008, 57, 42–50. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and high-performance computing. Nat. Methods 2015, 9, 6–9. [Google Scholar]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, M.; Smith, N.J.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001, 68, 978–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, M.; Snell, Q.; Walker, P.; Posada, D.; Crandall, K. TCS: Estimating gene genealogies. In Proceedings of the 16th International Parallel and Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale, FL, USA, 15–19 April 2002; Volume 2, p. 0184. [Google Scholar]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [PubMed]
- Beerli, P.; Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. USA 2001, 98, 4563–4568. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Rambaut, A.; Shapiro, B.; Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005, 22, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Sefc, K.M.; Wagner, M.; Zangl, L.; Weiß, S.; Steinwender, B.; Arminger, P.; Weinmaier, T.; Balkic, N.; Kohler, T.; Inthal, S.; et al. Phylogeographic structure and population connectivity of a small benthic fish (Tripterygion tripteronotum) in the Adriatic Sea. J. Biogeogr. 2020. [Google Scholar] [CrossRef]
- Shanks, A.L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 2009, 216, 373–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, R.A.; Leslie, W.G.; Theocharis, A. Mediterranean Sea Circulation. In Encyclopedia of Ocean Sciences, 1st ed.; Steele, J.H., Thorpe, S.A., Turekian, K.K., Eds.; Academic Press: San Diego, USA, 2001; pp. 1689–1705. [Google Scholar]
- Serra, I.A.; Innocenti, A.M.; Di Maida, G.; Calvo, S.; Migliaccio, M.; Zambianchi, E.; Pizzigalli, C.; Arnaud-Haond, S.; Duarte, C.M.; Serrao, E.A.; et al. Genetic structure in the Mediterranean seagrass Posidonia oceanica: Disentangling past vicariance events from contemporary patterns of gene flow. Mol. Ecol. 2010, 19, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Jason Kennington, W.; Stat, M.; Wilkinson, S.P.; Kool, J.T.; Kendrick, G.A. Isolation by resistance across a complex coral reef seascape. Proc. R. Soc. B Biol. Sci. 2015, 282, 50–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munguia-Vega, A.; Marinone, S.G.; Paz-Garcia, D.A.; Giron-Nava, A.; Plomozo-Lugo, T.; Gonzalez-Cuellar, O.; Weaver, A.H.; García-Rodriguez, F.J.; Reyes-Bonilla, H. Anisotropic larval connectivity and metapopulation structure driven by directional oceanic currents in a marine fish targeted by small-scale fisheries. Mar. Biol. 2018, 165, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Banks, S.C.; Piggott, M.P.; Williamson, J.E.; Bové, U.; Holbrook, N.J.; Beheregaray, L.B. Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 2007, 88, 3055–3064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benestan, L.; Quinn, B.K.; Maaroufi, H.; Laporte, M.; Clark, F.K.; Greenwood, S.J.; Rochette, R.; Bernatchez, L. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 2016, 25, 5073–5092. [Google Scholar] [CrossRef]
- Borges, R.; Faria, C.; Gil, F.; Gonçalves, E.J. Early Development of Gobies. In The Biology of Gobies; Patzner, R., Van Tassell, J.L., Kovačić, M., Kapoor, B.G., Eds.; CRC Press: Enfield, NH, USA; Taylor and Francis Group: Enfield, NH, USA; Science Publishers: Enfield, NH, USA, 2006; pp. 401–455. [Google Scholar]
- Raventós, N.; Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 2001, 138, 1115–1120. [Google Scholar]
- Koblmüller, S.; Steinwender, B.; Weiß, S.; Sefc, K.M. Gene flow, population growth and a novel substitution rate estimate in a subtidal rock specialist, the black-faced blenny Tripterygion delaisi (Perciformes, Blennioidei, Tripterygiidae) from the Adriatic Sea. J. Zool. Syst. Evol. Res. 2015, 53, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, A.M.; Francisco, S.M.; Fruciano, C.; S Lima, C.; Pulvirenti, V.; Tigano, C.; Robalo, J.I.; Ferrito, V. Mitochondrial and nuclear intraspecific variation in the rusty blenny (Parablennius sanguinolentus, Blenniidae). Hydrobiologia 2017, 802, 141–154. [Google Scholar] [CrossRef]
- Domingues, V.S.; Stefanni, S.; Brito, A.; Santos, R.S.; Almada, V.C. Phylogeography and demography of the Blenniid Parablennius parvicornis and its sister species P. sanguinolentus from the northeastern Atlantic Ocean and the western Mediterranean Sea. Mol. Phylogenet. Evol. 2008, 46, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.A.; Shanks, A.L. Evidence for limited larval dispersal in black rockfish (Sebastes melanops): Implications for population structure and marine-reserve design. Can. J. Fish. Aquat. Sci. 2004, 61, 1723–1735. [Google Scholar] [CrossRef] [Green Version]
- Almany, G.R.; Berumen, M.L.; Thorrold, S.R.; Planes, S.; Jones, G.P. Local replenishment of coral reef fish populations in a marine reserve. Science 2007, 316, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Kovačić, M. Unusual morphological and ecological characteristics of hyperbenthic juveniles of Gobius cruentatus. J. Fish Biol. 2004, 65, 545–558. [Google Scholar] [CrossRef]
- Šegvić-Bubić, T.; Marrone, F.; Grubišić, L.; Izquierdo-Gomez, D.; Katavić, I.; Arculeo, M.; Lo Brutto, S. Two seas, two lineages: How genetic diversity is structured in Atlantic and Mediterranean greater amberjack Seriola dumerili Risso, 1810 (Perciformes, Carangidae). Fish. Res. 2016, 179, 271–279. [Google Scholar] [CrossRef]
- Viñas, J.; Bremer, J.A.; Pla, C. Phylogeography of the Atlantic bonito (Sarda sarda) in the northern Mediterranean: The combined effects of historical vicariance, population expansion, secondary invasion, and isolation by distance. Mol. Phylogenet. Evol. 2004, 33, 32–42. [Google Scholar] [CrossRef]
- Tougard, C.; Folly, J.; Berrebi, P. New light on the evolutionary history of the common goby (Pomatoschistus microps) with an emphasis on colonization processes in the Mediterranean Sea. PLoS ONE 2014, 9, e91576. [Google Scholar] [CrossRef]
- Durand, J.D.; Blel, H.; Shen, K.N.; Koutrakis, E.T.; Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: A single mitochondrial clade and many nuclear barriers. Mar. Ecol. Prog. Ser. 2013, 474, e91576. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, E.G.; Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 2007, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Domingues, V.S.; Santos, R.S.; Brito, A.; Alexandrou, M.; Almada, V.C. Mitochondrial and nuclear markers reveal isolation by distance and effects of Pleistocene glaciations in the northeastern Atlantic and Mediterranean populations of the white seabream (Diplodus sargus, L.). J. Exp. Mar. Bio. Ecol. 2007, 346, 102–113. [Google Scholar] [CrossRef]
- Bahri-Sfar, L.; Lemaire, C.; Ben Hassine, O.K.; Bonhomme, F. Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. London Ser. B, Biol. Sci. 2000, 267, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Borsa, P.; Blanquer, A.; Berrebi, P. Genetic structure of the flounders Platichthys flesus and P. stellatus at different geographic scales. Mar. Biol. 1997, 129, 233–246. [Google Scholar] [CrossRef]
- Wagner, M.; Bračun, S.; Skofitsch, G.; Kovačić, M.; Zogaris, S.; Iglésias, S.P.; Sefc, K.M.; Koblmüller, S. Diversification in gravel beaches: A radiation of interstitial clingfish (Gouania, Gobiesocidae) in the Mediterranean Sea. Mol. Phylogenet. Evol. 2019, 139, 106525. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.R.; Perrone, E.; Sola, L. Genetic structure of gilthead seabream, Sparus aurata, in the central Mediterranean sea. Cent. Eur. J. Biol. 2006, 1, 636–647. [Google Scholar] [CrossRef]
Locality | Coordinates | G. geniporus | G. cruentatus | ||
---|---|---|---|---|---|
N cyt b | N S7 | N cyt b | N S7 | ||
Cyprus E (east)—Cavo Greco | 34.98556° N, 34.07667° E | 11 | 11 | ||
Cyprus W (west)—Akamas | 35.07528° N, 32.33278° E | 12 | 12 | 3 | 3 |
Greece—Evia Island | 37.99694° N, 24.39806° E | 10 | 10 | ||
Montenegro—Boka Kotorska | 42.48500° N, 18.67028° E | 13 | 13 | 2 | 2 |
Croatia—Selce | 45.15194° N, 14.72083° E | 10 | 10 | 11 | 11 |
Sicily—near Catania | 37.99694° N, 24.39806° E | 16 | 15 | 12 | 12 |
France—Banyuls sur Mer | 42.48194° N, 3.13667° E | 2 | 2 | 4 | 4 |
Spain—Galicia, Vigo | 42.24917° N, 8.75583° W | 5 | 3 | ||
Portugal—Algarve | 37.07389° N, 8.30361° W | 4 | 4 | ||
Total | 74 | 73 | 41 | 39 |
Species | N | S | Nh | Hd | π | Fu & Li’s F | Tajima’s D |
---|---|---|---|---|---|---|---|
G. geniporus | |||||||
cyt b | 74 | 56 | 45 | 0.969 | 0.004 | −3.987 * | −2.055 * |
S7 | 146 | 2 | 3 | 0.054 | 0.0001 | ||
G. cruentatus | |||||||
cyt b | 41 | 47 | 32 | 0.985 | 0.006 | −2.522 * | −1.284 |
S7 | 78 | 3 | 4 | 0.212 | 0.0004 |
Sicily | Croatia | Montenegro | France | Cyprus W | Cyprus E | Greece | |
---|---|---|---|---|---|---|---|
Sicily | 0.4 | 0.5 | 0.5 | 0.3 | 0.4 | 0.4 | 0.5 |
Croatia | 0.224 * | 0.5 | 0.4 | 0.5 | 0.5 | 0.6 | 0.5 |
Montenegro | 0.209 * | 0.000 | 0.4 | 0.4 | 0.4 | 0.5 | 0.4 |
France | 0.000 | 0.227 | 0.263 | 0.1 | 0.3 | 0.3 | 0.4 |
Cyprus W | 0.285 * | 0.369 * | 0.349 * | 0.408 | 0.2 | 0.2 | 0.3 |
Cyprus E | 0.271 * | 0.413 * | 0.399 * | 0.373 | 0.056 | 0.2 | 0.3 |
Greece | 0.151 * | 0.106 | 0.065 | 0.160 | 0.077 | 0.145 * | 0.4 |
Sicily | Croatia | Montenegro | Spain | Portugal | France | Cyprus W | |
---|---|---|---|---|---|---|---|
Sicily | 0.5 | 0.7 | 0.6 | 0.7 | 0.7 | 0.7 | 0.5 |
Croatia | 0.000 | 0.8 | 0.7 | 0.7 | 0.7 | 0.8 | 0.7 |
Montenegro | 0.000 | 0.000 | 1.1 | 0.7 | 0.6 | 0.7 | 0.7 |
Spain | 0.370 | 0.223 | 0.309 | 0.2 | 0.3 | 0.3 | 0.9 |
Portugal | 0.342 | 0.176 | 0.149 | 0.137 | 0.2 | 0.3 | 0.9 |
France | 0.332 | 0.172 | 0.126 | 0.103 | 0.044 | 0.4 | 1.0 |
Cyprus W | 0.074 | 0.057 | 0.077 | 0.725 | 0.688 | 0.613 | 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čekovská, K.; Šanda, R.; Eliášová, K.; Kovačić, M.; Zogaris, S.; Pappalardo, A.M.; Soukupová, T.; Vukić, J. Population Genetic Diversity of Two Marine Gobies (Gobiiformes: Gobiidae) from the North-Eastern Atlantic and the Mediterranean Sea. J. Mar. Sci. Eng. 2020, 8, 792. https://doi.org/10.3390/jmse8100792
Čekovská K, Šanda R, Eliášová K, Kovačić M, Zogaris S, Pappalardo AM, Soukupová T, Vukić J. Population Genetic Diversity of Two Marine Gobies (Gobiiformes: Gobiidae) from the North-Eastern Atlantic and the Mediterranean Sea. Journal of Marine Science and Engineering. 2020; 8(10):792. https://doi.org/10.3390/jmse8100792
Chicago/Turabian StyleČekovská, Katarína, Radek Šanda, Kristýna Eliášová, Marcelo Kovačić, Stamatis Zogaris, Anna Maria Pappalardo, Tereza Soukupová, and Jasna Vukić. 2020. "Population Genetic Diversity of Two Marine Gobies (Gobiiformes: Gobiidae) from the North-Eastern Atlantic and the Mediterranean Sea" Journal of Marine Science and Engineering 8, no. 10: 792. https://doi.org/10.3390/jmse8100792
APA StyleČekovská, K., Šanda, R., Eliášová, K., Kovačić, M., Zogaris, S., Pappalardo, A. M., Soukupová, T., & Vukić, J. (2020). Population Genetic Diversity of Two Marine Gobies (Gobiiformes: Gobiidae) from the North-Eastern Atlantic and the Mediterranean Sea. Journal of Marine Science and Engineering, 8(10), 792. https://doi.org/10.3390/jmse8100792