Shape Characteristics of Coral Sand from the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experiment Apparatus and Operations
2.3. Construction of Particle Shape Parameters
3. Shape Analysis of Coral Sand Particles
3.1. Effect of Particle Size
3.2. Analysis of Particle Fractal Dimension
3.3. Distribution Characteristics and Sensitivity Analysis of Particle Shape Parameters
4. Comparative Analysis of the Particle Shape of Coral Sand and Quartz Sand
5. Influence of Particle Shape on Accumulation Characteristics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Cui, J.; Wu, Y.; Zhu, C.Q.; Wang, X.Z. Mechanical properties of calcareous silts in a hydraulic fill island-reef. Mar. Georesources Geotechnol. 2020, 1–14. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Shen, J.H.; Cui, J.; Zhu, C.Q.; Wang, X.Z. Experimental study on the impact of water content on the strength parameters of coral gravelly sand. J. Mar. Sci. Eng. 2020, 8, 634. [Google Scholar] [CrossRef]
- Demars, K.R.; Nacci, V.A.; Kelly, W.E.; Wang, M.C. Carbonate content: An index property for ocean sediments. In Proceedings of the 8th Annual Offshore Technology Conference, Houston, TX, USA, 3–6 May 1976; pp. 97–106. [Google Scholar]
- Shaqour, F.M. Cone penetration resistance of calcareous sand. Bull. Eng. Geol. Environ. 2007, 66, 59–70. [Google Scholar] [CrossRef]
- Hassanlourad, M.; Salehzadeh, H.; Shahnazari, H. Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects. Int. J. Civ. Eng. 2008, 6, 108–119. [Google Scholar]
- Hassanlourad, M.; Salehzadeh, H.; Shahnazari, H. Drained shear strength of carbonate sands based on energy approach. Int. J. Geotech. Eng. 2014, 8, 1–9. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.L.; Chen, Q.S.; Ma, Q.F.; Xiang, Y.Z.; Zheng, Y.R. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech. 2017, 12, 1177–1184. [Google Scholar] [CrossRef]
- Wang, G.; Ye, Q.G.; Zha, J.J. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill. Chin. J. Geotech. Eng. 2017, 40, 802–810. [Google Scholar]
- Wang, X.Z.; Wang, X.; Chen, J.W.; Wang, R.; Hu, M.J.; Meng, Q.S. Experimental study on permeability characteristics of calcareous soil. Bull. Eng. Geol. Environ. 2017, 77, 1753–1762. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.L.; Yang, Q.; Jiang, M.J. Centrifugal test and numerical assessment for settlement of a large-scale artificial island constructed on deep marine clays. Eur. J. Environ. Civ. Eng. 2017, 21, 172–192. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wang, X.; Hu, M.J.; Zhu, C.Q.; Meng, Q.S.; Wang, R. Study on permeability characteristics of interlayer of calcareous silt in artificial island. Rock Soil Mech. 2017, 38, 3127–3135. [Google Scholar]
- Shen, Y.; Zhu, Y.H.; Liu, H.L.; Li, A.; Ge, H.Y. Macro-meso effects of gradation and particle morphology on the compressibility characteristics of calcareous sand. Bull. Eng. Geol. Environ. 2018, 77, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Ren, Y.B.; Niu, J.L.; Cheng, K.; Hu, Y.X.; Wang, Y. Characteristics of soft marine clay under cyclic loading: A review. Bull. Eng. Geol. Environ. 2018, 77, 1017–1046. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.X.; Wu, Y.; Yang, Q. New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape. Powder Technol. 2018, 326, 379–392. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, C.Q.; Wang, X.Z.; Qin, Y. Study of dilatancy behaviors of calcareous soils in a triaxial test. Mar. Georesources Geotechnol. 2019, 37, 1057–1070. [Google Scholar] [CrossRef]
- Shang, G.W.; Sun, L.Q.; Li, S.; Liu, X.L.; Chen, W.W. Experimental study of the shear strength of carbonate gravel. Bull. Eng. Geol. Environ. 2020, 79, 2381–2394. [Google Scholar] [CrossRef]
- He, S.H.; Zhang, Q.F.; Ding, Z.; Xia, T.D.; Gan, X.L. Experimental and estimation studies of resilient modulus of marine coral sand under cyclic loading. J. Mar. Sci. Eng. 2020, 8, 287. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, X.M.; Zhang, Y.L.; Chen, Z.X. Comparative study on seismic response of pile group foundation in coral sand and Fujian sand. J. Mar. Sci. Eng. 2020, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Ting, J.M.; Meachum, L.; Rowell, J.D. Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages. Eng. Comput. 1995, 12, 99–108. [Google Scholar] [CrossRef]
- Antony, S.J.; Kuhn, M.R. Influence of particle shape on granular contact signatures and shear strength: New insights from simulations. Int. J. Solids Struct. 2004, 41, 5863–5870. [Google Scholar] [CrossRef]
- Rouse, P.C.; Fannin, R.J.; Shuttle, D.A. Influence of roundness on the void ratio and strength of uniform sand. Geotechnique 2008, 58, 227–231. [Google Scholar] [CrossRef]
- Liu, Q.B.; Xiang, W.; Budhu, M.; Cui, D.S. Study of particle shape quantification and effect on mechanical property of sand. Rock Soil Mech. 2011, 32, 190–197. [Google Scholar]
- Liu, Q.B.; Xiang, W.; Lehane, B.M.; Cui, D.S.; Li, Y.N. Experimental study of effect of particle shapes on shear strength of sand and tip resistance of driven piles. Chin. J. Rock Mech. Eng. 2011, 30, 400–410. [Google Scholar]
- Payan, M.; Khoshghalb, A.; Senetakis, K.; Khalili, N. Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression. Comput. Geotech. 2016, 72, 28–41. [Google Scholar] [CrossRef]
- Kandasami, R.K.; Murthy, T.G. Manifestation of particle morphology on the mechanical behaviour of granular ensembles. Granul. Matter 2017, 19, 1–13. [Google Scholar] [CrossRef]
- Zheng, J.; Hryciw, R.D. Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Geotechnique 2015, 65, 494–506. [Google Scholar] [CrossRef]
- Ehrlich, R.; Weinberg, B. An exact method for characterization of grain shape. J. Sediment. Petrol. 1970, 40, 205–212. [Google Scholar]
- Bowman, E.T.; Soga, K.; Drummond, W. Particle shape characterisation using Fourier descriptor analysis. Geotechnique 2000, 51, 545–554. [Google Scholar] [CrossRef]
- Hyslip, J.P.; Vallejo, L.E. Fractal analysis of the roughness and size distribution of granular materials. Eng. Geol. 1997, 48, 231–244. [Google Scholar] [CrossRef]
- Chan, L.C.Y.; Page, N.W. Particle fractal and load effects on internal friction in powders. Powder Technol. 1997, 90, 259–266. [Google Scholar] [CrossRef]
- Gori, U.; Mari, M. The correlation between the fractal dimension and internal friction angle of different granular materials. Soils Found. 2001, 41, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Rausch, J.; Grobety, B.; Vonlanthen, P. Eifel maars: Quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany). J. Volcanol. Geotherm. Res. 2015, 291, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Mora, C.F.; Kwan, A.K.H. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement Concrete Res. 2000, 30, 351–358. [Google Scholar] [CrossRef]
- Sukumaran, B.; Ashmawy, A.K. Quantitative characterisation of the geometry of discrete particles. Geotechnique 2002, 51, 619–627. [Google Scholar] [CrossRef]
- Cho, G.C.; Dodds, J.; Santamarina, J.C. Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands. J. Geotech. Geoenviron. 2006, 132, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Cox, M.R.; Budhu, M. A practical approach to grain shape quantification. Eng. Geol. 2008, 96, 1–16. [Google Scholar] [CrossRef]
- Felekoglu, B. A new approach to the characterisation of particle shape and surface properties of powders employed in concrete industry. Constr. Build. Mater. 2009, 23, 1154–1162. [Google Scholar] [CrossRef]
- Altuhafi, F.; O’ sullivan, C.; Cavarretta, I. Analysis of an image-based method to quantify the size and shape of sand particles. J. Geotech. Geoenviron. 2012, 139, 1290–1307. [Google Scholar] [CrossRef]
- Shin, H.; Santamarina, J.C. Role of particle angularity on the mechanical behavior of granular mixtures. J. Geotech. Geoenviron. 2013, 139, 353–355. [Google Scholar] [CrossRef]
- Yang, J.; Luo, X.D. Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids. 2015, 84, 196–213. [Google Scholar] [CrossRef]
- Shen, W.G.; Yang, Z.G.; Cao, L.H.; Cao, L.; Liu, Y.; Yang, H.; Liu, Z.L.; Bai, J. Characterization of manufactured sand: Particle shape, surface texture and behavior in concrete. Constr. Build. Mater. 2016, 114, 595–601. [Google Scholar] [CrossRef]
- Keramatikerman, M.; Chegenizadeh, A. Effect of particle shape on monotonic liquefaction: Natural and crushed sand. Exp. Mech. 2017, 57, 1341–1348. [Google Scholar] [CrossRef]
- Xu, D.S.; Tang, Z.Y.; Zhang, L. Interpretation of coarse effect in simple shear behavior of binary sand-gravel mixture by DEM with authentic particle shape. Constr. Build. Mater. 2019, 195, 292–304. [Google Scholar] [CrossRef]
- Ren, Q.; De Schutter, G.; Jiang, Z.W.; Chen, Q. Multi-level diffusion model for manufactured sand mortar considering particle shape and limestone powder effects. Constr. Build. Mater. 2019, 207, 218–227. [Google Scholar] [CrossRef]
- Sarkar, D.; Goudarzy, M.; Konig, D. An interpretation of the influence of particle shape on the mechanical behavior of granular material. Granul. Matter 2019, 21, 53.1–53.24. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Baudet, B.A.; Yao, T. The influence of particle shape and mineralogy on the particle strength, breakage and compressibility. Int. J. Geo-Eng. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Zhou, B.; Liu, H.F. Investigation of naturally cemented calcareous soil on strength and microstructure of natural cemented calcareous soil. Rock Soil Mech. 2014, 35, 1655–1663. [Google Scholar]
- Zhu, C.Q.; Zhou, B.; Liu, H.F. Progress in laboratory experiments of cemented calcareous soils. Rock Soil Mech. 2015, 36, 311–319. [Google Scholar]
- Zhu, C.Q.; Chen, H.Y.; Meng, Q.S.; Wang, R. Structural analysis of pores in calcareous sand particles. Rock Soil Mech. 2014, 35, 1831–1836. [Google Scholar]
- Jiang, M.J.; Wu, D.; Cao, P.; Ding, Z.J. Connected inner pore analysis of calcareous sands using SEM. Chin. J. Geotech. Eng. 2017, 39, 1–5. [Google Scholar]
- Coop, M.R.; Sorensen, K.K.; Bodas Freitas, T.; Georgoutsos, G. Particle breakage during shearing of a carbonate sand. Geotechnique 2004, 54, 157–163. [Google Scholar] [CrossRef]
- Shahnazari, H.; Rezvani, R. Effective parameters for the particle breakage of calcareous sands: An experimental study. Eng. Geol. 2013, 159, 98–105. [Google Scholar] [CrossRef]
- Zhang, J.F.; Ye, J.B.; Chen, J.S.; Li, S.L. A preliminary study of measurement and evaluation of breakstone grain shape. Rock Soil Mech. 2016, 37, 343–349. [Google Scholar]
- Sun, Q.; Zheng, J.X.; Coop, M.R.; Altuhafi, F.N. Minimum image quality for reliable optical characterizations of soil particle shapes. Comput. Geotech. 2019, 114, 103110. [Google Scholar] [CrossRef]
- Mark, L.H.; Neil, W.P. Selection of descriptors for particle shape characterization. Part. Part. Syst. Char. 2010, 20, 25–38. [Google Scholar]
- Chen, H.Y.; Wang, R.; Li, J.G.; Zhang, J.M. Grain shape analysis of calcareous soil. Rock Soil Mech. 2005, 26, 1389–1392. [Google Scholar]
- Liu, G.; Zhao, M.Z.; Lu, R.; Luo, Q.; Lv, C. Morphology characterisics of gravel particle and its relationship with stacking void ratio. Rock Soil Mech. 2019, 40, 4644–4658. [Google Scholar]
- Chinese Ministry of Water Resources. Standard: Standard for Soil Test Method (GB/T 50123-2019); China Planning Press: Beijing, China, 2019.
- Youd, T.L. Factors Controlling Maximum and Minimum Densities of Sands; ASTM: West Conshohocken, PA, USA, 1973; pp. 98–112. [Google Scholar]
- Zheng, J.X.; Hryciw, R.D. Index void ratios of sands from their intrinsic properties. J. Geotech. Geoenviron. 2016, 142, 06016019. [Google Scholar] [CrossRef]
- Sarkar, D.; König, D.; Goudarzy, M. The influence of particle characteristics on the index void ratios ingranular materials. Particuology 2019, 46, 1–13. [Google Scholar] [CrossRef]
Sample | D (mm) | D10 (mm) | D30 (mm) | D50 (mm) | D60 (mm) | Nonuniformity Coefficient Cu | Curvature Coefficient Cc |
---|---|---|---|---|---|---|---|
Coral medium sand | 0.5–1.0 | 0.55 | 0.65 | 0.75 | 0.80 | 1.45 | 0.96 |
Coral coarse sand | 1.0–2.0 | 1.10 | 1.30 | 1.50 | 1.60 | 1.45 | 0.96 |
Coral gravel sand | 2.0–5.0 | 2.30 | 2.90 | 3.50 | 3.80 | 1.65 | 0.96 |
Quartz medium sand | 0.5–1.0 | 0.55 | 0.65 | 0.75 | 0.80 | 1.45 | 0.96 |
Quartz coarse sand | 1.0–2.0 | 1.10 | 1.30 | 1.50 | 1.60 | 1.45 | 0.96 |
Quartz gravel sand | 2.0–5.0 | 2.30 | 2.90 | 3.50 | 3.80 | 1.65 | 0.96 |
Basic Size Parameters | Symbol | Description |
---|---|---|
Area | A | Area of the graph surrounded by the outer contour points of a particle |
Perimeter | P | Perimeter of the graph surrounded by the outer contour points of a particle |
Maximum Ferret diameter | Feretmax | Maximum distance between two boundary parallel lines of a particle projection contour |
Minimum Ferret diameter | Feretmin | Minimum distance between two boundary parallel lines of a particle projection contour |
Radius of circumscribed circle | Rc | Radius of the smallest circumscribed circle |
Radius of inscribed circle | Ri | Radius of the largest inscribed circle |
Perimeter of external polygon | Pc | Perimeter of the smallest external polygon along the particle boundary |
Perimeter of ellipse | Pe | Perimeter of an ellipse with the same area and flatness as a particle |
Particle Size D (mm) | 0.5–1.0 | 1.0–2.0 | 2.0–5.0 |
Fractal Dimension Dp | 1.06938 | 1.09268 | 1.10332 |
Particle Size | 0.5–1.0 mm | 1.0–2.0 mm | 2.0–5.0 mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shape Parameters | Overall Contour Coefficient α | Flatness E | Angularity Ag | Roughness R | Overall Contour Coefficient α | Flatness E | Angularity Ag | Roughness R | Overall Contour Coefficient α | Flatness E | Angularity Ag | Roughness R |
Mean value | 0.93267 | 1.47363 | 1.01789 | 1.01425 | 0.90845 | 1.48061 | 1.04102 | 1.01556 | 0.86955 | 1.60616 | 1.06444 | 1.01926 |
Standard variance | 0.03814 | 0.25311 | 0.01995 | 0.01294 | 0.03414 | 0.24156 | 0.02654 | 0.01217 | 0.05695 | 0.39946 | 0.03827 | 0.01910 |
Coefficient of variation | 0.04089 | 0.17176 | 0.01960 | 0.01276 | 0.03758 | 0.16315 | 0.02550 | 0.01198 | 0.06549 | 0.24871 | 0.03595 | 0.01874 |
Concentrated distribution interval | 0.92737– 0.93797 | 1.43846– 1.50879 | 1.01512– 1.02066 | 1.01246– 1.01605 | 0.90372– 0.91318 | 1.44713– 1.514090 | 1.03734– 1.04469 | 1.01388– 1.01725 | 0.86166– 0.87744 | 1.5508– 1.66152 | 1.05914– 1.06974 | 1.01661– 1.02190 |
Interval length | 0.01060 | 0.07033 | 0.00554 | 0.00360 | 0.00946 | 0.06696 | 0.00736 | 0.00337 | 0.01578 | 0.11072 | 0.01061 | 0.00529 |
SK | −0.76594 | 1.09211 | 0.80144 | 3.45728 | -0.39706 | 1.03294 | 1.09371 | 2.12617 | -0.77176 | 1.55492 | 1.02152 | 2.88351 |
Skewness type | negative skewness | positive skewness | positive skewness | positive skewness | negative skewness | positive skewness | positive skewness | positive skewness | negative skewness | positive skewness | positive skewness | positive skewness |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, Y.; Cui, J.; Zhu, C.-Q.; Wang, X.-Z. Shape Characteristics of Coral Sand from the South China Sea. J. Mar. Sci. Eng. 2020, 8, 803. https://doi.org/10.3390/jmse8100803
Wang X, Wu Y, Cui J, Zhu C-Q, Wang X-Z. Shape Characteristics of Coral Sand from the South China Sea. Journal of Marine Science and Engineering. 2020; 8(10):803. https://doi.org/10.3390/jmse8100803
Chicago/Turabian StyleWang, Xing, Yang Wu, Jie Cui, Chang-Qi Zhu, and Xin-Zhi Wang. 2020. "Shape Characteristics of Coral Sand from the South China Sea" Journal of Marine Science and Engineering 8, no. 10: 803. https://doi.org/10.3390/jmse8100803
APA StyleWang, X., Wu, Y., Cui, J., Zhu, C. -Q., & Wang, X. -Z. (2020). Shape Characteristics of Coral Sand from the South China Sea. Journal of Marine Science and Engineering, 8(10), 803. https://doi.org/10.3390/jmse8100803