Seaports and Economic Growth: Panel Data Analysis of EU Port Regions
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Research Method
3.2. Data Collection
3.3. Variables
3.4. Model Specification
4. Results
4.1. Descriptive Statistical Analysis
4.2. Model Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shan, J.; Yu, M.; Lee, C.Y. An empirical investigation of the seaport’s economic impact: Evidence from major ports in China. Transp. Res. Part E Logist. Transp. Rev. 2014, 69, 41–53. [Google Scholar] [CrossRef]
- Fujita, M.; Krugman, P.; Venables, A.J. The Spatial Economy: Cities, Regions, and International Trade; The MIT Press: Cambridge, MA, MA, USA, 1999. [Google Scholar]
- Crescenzi, R.; Rodríguez, P.A. Infrastructure and regional growth in the European Union. Pap. Reg. Sci. 2012, 91, 487–513. [Google Scholar] [CrossRef]
- Gripaios, P.; Gripaios, R. The Impact of a Port on its Local Economy: The Case of Plymouth. Marit Policy Manag. 1995, 22, 13–23. [Google Scholar] [CrossRef]
- Cohen, J.; Monaco, K. Ports and highways infrastructure: An analysis of intra- and interstate spillovers. Int. Reg. Sci. Rev. 2008, 31, 257–274. [Google Scholar] [CrossRef]
- Bottasso, A.; Conti, M.; Ferrari, C.; Tei, A. Ports and regional development: A spatial analysis on a panel of European regions. Transp. Res. Part A Policy Pract. 2014, 65, 44–55. [Google Scholar] [CrossRef]
- Aschauer, D.A. Is public expenditure productive? J. Monet. Econ. 1989, 23, 177–200. [Google Scholar] [CrossRef]
- Bottasso, A.; Conti, M.; Ferrari, C.; Merk, O.; Tei, A. The impact of port throughput on local employment: Evidence from a panel of European regions. Transp. Policy 2013, 27, 32–38. [Google Scholar] [CrossRef]
- Ferrari, C.; Percoco, M.; Tedeschi, A. Ports and local development: Evidence from Italy. Int. J. Transp. Econ. 2010, 37, 9–30. [Google Scholar]
- Notteboom, T.E.; Winkelmans, W. Structural changes in logistics: How will port authorities face the challenge. Marit Policy Manag. 2001, 28, 71–89. [Google Scholar] [CrossRef]
- Villaverde, C.J.; Coto, M.P. Port economic impact: Methodologies and application to the port of Santander. Int. J. Transp. Econ. 1998, 25, 159–179. [Google Scholar]
- Romer, P.M. Endogenous Technological Change. J. Polit. Econ. 1990, 98, 71–102. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.E., Jr. On the mechanics of economic development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- Bronzini, R.; Piselli, P. Determinants of Long-Run Regional Productivity: The Role of R&D, Human Capital and Public Infrastructure; Banca d’Italia: Rome, Italy, 2006. [Google Scholar]
- Park, J.S.; Seo, Y.J. The impact of seaports on the regional economies in South Korea: Panel evidence from the augmented Solow model. Transp. Res. Part E Logist. Transp. Rev. 2016, 85, 107–119. [Google Scholar] [CrossRef]
- Jouili, T.A. The Role of Seaports in the Process of Economic Growth. Dev. Ctry. Stud. 2016, 6, 64–69. [Google Scholar]
- Zhao, Q.; Xu, H.; Wall, R.S.; Stavropoulos, S. Building a bridge between port and city: Improving the urban competitiveness of port cities. J. Transp. Geogr. 2017, 59, 120–133. [Google Scholar] [CrossRef]
- Cheung, S.M.S.; Yip, T.L. Port city factors and port production: Analysis of Chinese ports. Transp. J. 2011, 50, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Bilbao, O.B.; Rodríguez, P.A. From R&D to Innovation and Economic Growth in the EU. Growth Chang. 2004, 35, 434–455. [Google Scholar]
- Crescenzi, R. Innovation and Regional Growth in the Enlarged Europe: The Role of Local Innovative Capabilities, Peripherality and Education. Growth Chang. 2005, 36, 471–507. [Google Scholar] [CrossRef]
- Schumpeter, J. Capitalism, Socialism, and Democracy; Harper & Brothers: New York, NY, USA, 1942. [Google Scholar]
- Grossman, G.M.; Helpman, E. Trade, Innovation and Growth. Am. Econ. Rev. 1990, 80, 86–91. [Google Scholar]
- Grossman, G.M.; Helpman, E. Innovation and Growth in the Global Economy; The MIT Press: Cambridge, MA, MA, USA, 1991. [Google Scholar]
- Aghion, P.; Howitt, P. A Model of Growth Through Creative Destruction. Society 1992, 60, 323–351. [Google Scholar]
- Mervar, A. Pregled modela i metoda istraživanja gospodarskog rasta. Privred kretanja i Ekon Polit 1999, 9, 20–61. [Google Scholar]
- Sundać, D.; Škalamera, A.D.; Babić, M. Poslovno okruženje i intelektualni kapital; Ekonomski fakultet Sveučilišta u Rijeci: Rijeka, Croatia, 2016. [Google Scholar]
- Schultz, T.W. Investment in Human Capital. Am. Econ. Rev. 1961, 51, 1–17. [Google Scholar]
- Becker, G.S. Investment in Human Capital: A Theoretical Analysis. J. Polit. Econ. 1962, 70, 9–49. [Google Scholar] [CrossRef]
- Bleaney, M.; Gemmell, N.; Kneller, R. Testing the endogenous growth model: Public expenditure, taxation, and growth over the long run. Can. J. Econ. 2001, 34, 36–57. [Google Scholar] [CrossRef]
- Caselli, F.; Esquivel, G.; Lefort, F. Reopening the Convergence Debate: A New Look at Cross-Country Growth Empirics. J. Econ. Growth 1996, 1, 363–389. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.; Loayza, N.; Beck, T. Financial intermediation and growth: Causality and causes. J. Monet. Econ. 2000, 46, 31–77. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D. How to do xtabond2: An introduction to difference and system GMM in Stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Akhtar, P.; Zaefarian, G. Dealing with endogeneity bias: The generalized method of moments (GMM) for panel data. Ind. Mark. Manag. 2018, 71, 69–78. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- European Commission (Eurostat). Regional Gross Domestic Product (PPS Per Inhabitant) by NUTS 2 Regions. 2016. Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tgs00005&plugin=1 (accessed on 14 May 2018).
- European Commission (Eurostat). Maritime Transport of Freight by NUTS 2 Regions. 2018. Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&plugin=1&language=en&pcode=tgs00076 (accessed on 14 May 2018).
- European Commission (Eurostat). Intramural R&D Expenditure (GERD) by NUTS 2 Regions. 2018. Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&plugin=1&language=en&pcode=tgs00042 (accessed on 14 May 2018).
- European Commission (Eurostat). Tertiary Educational Attainment, Age Group 25–64 by Sex and NUTS 2 Regions. 2018. Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tgs00109&plugin=1 (accessed on 14 May 2018).
- European Commission (Eurostat). Unemployment Rate by NUTS 2 Regions. 2018. Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tgs00010&plugin=1 (accessed on 14 May 2018).
- European Commission (Eurostat). Population Change by NUTS 2 Region. 2018. Available online: https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tgs00099&language=en (accessed on 15 May 2018).
- European Commission (Eurostat). Exports of Goods and Services in % of GDP. 2018. Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tet00003&plugin=1 (accessed on 15 May 2018).
- European Commission (Eurostat). Government Expenditure on Transport. 2018. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/DDN-20180904-1 (accessed on 15 May 2018).
- European Commission (Eurostat). Maritime Transport of Freight by NUTS 2 Regions—Map. 2016. Available online: https://ec.europa.eu/eurostat/tgm/mapToolClosed.do?tab=map&init=1&plugin=1&language=en&pcode=tgs00076&toolbox=types (accessed on 20 May 2018).
- Rodríguez, P.A.; Crescenzi, R. Research and development, spillovers, innovation systems and the genesis of regional growth in Europe. Reg. Stud. 2008, 42, 51–67. [Google Scholar] [CrossRef]
- Hong, J.; Chu, Z.; Wang, Q. Transport infrastructure and regional economic growth: Evidence from China. Transportation (Amst). 2011, 38, 737–752. [Google Scholar] [CrossRef]
- European Commission. Investment in Human Capital-Assessing the Efficiency of Public Spending on Education. 2017. Available online: http://ec.europa.eu/social/main.jsp?catId=1224 (accessed on 23 March 2019).
- Bonnefond, C. Growth Dynamics and Conditional Convergence among Chinese Provinces: A Panel Data Investigation Using System GMM Estimator. J. Econ. Dev. 2014, 39, 1–25. [Google Scholar] [CrossRef]
- Gordon, I.; Martin, R.; Morrison, P.S. (Eds.) Unemployment and spatial labour markets: Strong adjustment and persistent concentration. In Geographies of Labour Market Inequality; Routledge: London, UK, 2001; pp. 55–82. [Google Scholar]
- Song, L.; Geenhuizen, M. Port infrastructure investment and regional economic growth in China: Panel evidence in port regions and provinces. Transp. Policy 2014, 36, 173–183. [Google Scholar] [CrossRef]
- Yoo, S.H. Seaport infrastructure investment and economic growth in Korea. Int. J. Crit. Infrastruct. 2006, 2, 1–9. [Google Scholar] [CrossRef]
- Deng, T.; Shao, S.; Yang, L.; Zhang, X. Has the transport-led economic growth effect reached a peak in China? A panel threshold regression approach. Transportation (Amst). 2014, 41, 567–587. [Google Scholar] [CrossRef]
- Canning, D.; Pedroni, P. Infrastructure, long-run economic growth and causality tests for cointegrated panels. Manch. MCR Sch. 2008, 76, 504–527. [Google Scholar] [CrossRef]
- Devarajan, S.; Swaroop, V.; Zou, H.F. The composition of public expenditure and economic growth. J. Monet. Econ. 1996, 37, 313–344. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.; Jong, M.; Storm, S.; Mi, J. Transport Infrastructure, Spatial Clusters and Regional Economic Growth in China. Transp. Rev. 2012, 32, 3–28. [Google Scholar] [CrossRef]
- Lovrić, L. Uvod u ekonometriju; Ekonomski fakultet Sveučilišta u Rijeci: Rijeka, Croatia, 2005. [Google Scholar]
- Windmeijer, F. A finite sample correction for the variance of linear efficient two-step GMM estimators. J. Econom. 2005, 126, 25–51. [Google Scholar] [CrossRef]
- Roodman, D. A Note on the Theme of Too Many Instruments. Oxf. Bull. Econ. Stat. 2009, 71, 135–158. [Google Scholar] [CrossRef]
- Mudronja, G. Inovacije i tehnološki napredak u poslovanju morskih luka i njihov utjecaj na gospodarstvo. In MIPRO 2020 43rd International Convention Proceedings, Opatija, Croatia September 28—October 2, 2020; Skala, K., Ed.; Croatian Society for Information, Communication and Electronic Technology–MIPRO: Opatija, Croatia, 2020; pp. 1737–1742. [Google Scholar]
- Mudronja, G.; Jugović, A.; Škalamera, A.D. Research and Development and Rconomic Growth: EU Port Regions. Zbornik Radova Ekonomski Fakultet u Rijeka 2019, 37, 587–602. [Google Scholar]
- Eurostat. Eurostat Regional Yearbook, 2018 ed.; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
Dependent Variable | Description | Formulation |
GDPpc | Gross domestic product per capita | Expressed in purchasing power standards (PPS) in EUR |
Independent Variables | Description | Formulation |
Freight | Freight traffic in seaports | 1000 tons |
RD | Investment in research and development | % of GDP |
HC | Human Capital | % population between 25–64 who completed tertiary education |
Control Variables | Description | Formulation |
Unempl | Unemployment rate | % of unemployed in total work force |
Pop | Population | % of total population change per 1000 persons |
Open | Trade openness | % of imports and exports in GDP |
Transport | Investment in transport infrastructure | % of GDP |
Variable | Number of Observations | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
GDPpc | 1175 | 25,269.19 | 7617.80 | 7100.00 | 59,500.00 |
Freight | 1176 | 31,178.99 | 45,982.07 | 240.00 | 44,8598.00 |
RD | 1136 | 1.39 | 1.02 | 0.06 | 5.44 |
HC | 1165 | 26.96 | 8.73 | 7.30 | 52.20 |
Unempl | 1161 | 9.26 | 5.55 | 2.00 | 37.00 |
Pop | 1167 | 4.27 | 7.35 | −28.90 | 54.80 |
Open | 1175 | 14.67 | 37.31 | 0.82 | 325.86 |
Transport | 1173 | 0.28 | 0.50 | 0.03 | 3.70 |
ln GDPpc | ln Freight | RD | HC | Unempl | Pop | Open | Transport | |
---|---|---|---|---|---|---|---|---|
ln GDPpc | 1 | - | - | - | - | - | - | - |
ln Freight | 0.08 | 1 | - | - | - | - | - | - |
RD | 0.54 | 0.19 | 1 | - | - | - | - | - |
HC | 0.46 | 0.00 | 0.47 | 1 | - | - | - | - |
Unempl | –0.36 | 0.05 | −0.25 | –0.16 | 1 | - | - | - |
Pop | 0.35 | –0.16 | 0.16 | 0.18 | –0.16 | 1 | - | - |
Open | –0.09 | –0.01 | –0.07 | 0.04 | –0.02 | –0.07 | 1 | - |
Transport | –0.19 | 0.08 | –0.04 | 0.07 | 0.02 | –0.22 | 0.76 | 1 |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
VARIABLES | ln GDPpc | ln GDPpc | ln GDPpc | ln GDPpc |
L.ln GDPpc | 0.967 *** | 0.959 *** | 0.952 *** | 0.949 *** |
(0.0139) | (0.0156) | (0.0151) | (0.0156) | |
ln Freight | 0.00924 ** | 0.00891 ** | 0.00966 *** | 0.00805 ** |
(0.00374) | (0.00384) | (0.00345) | (0.00322) | |
RD | - | 0.00695 * | - | 0.00204 |
- | (0.00384) | - | (0.00431) | |
HC | - | - | 0.000866 ** | 0.000698 * |
- | - | (0.000338) | (0.000364) | |
Unempl | −0.00246 *** | −0.00221 *** | −0.00235 *** | −0.00230 *** |
(0.000424) | (0.000439) | (0.000449) | (0.000389) | |
Open | 0.000147 ** | 0.000139 *** | 0.000185 *** | 0.000154 *** |
(6.11 × 10−5) | (4.94 × 10−5) | (5.43 × 10−5) | (4.74 × 10−5) | |
Pop | −0.000748 *** | −0.000747 ** | −0.000703 ** | −0.000748 ** |
(0.000281) | (0.000318) | (0.000283) | (0.000302) | |
Transport | −0.00465 | −0.00437 | −0.0111 * | −0.00894 |
(0.00615) | (0.00540) | (0.00594) | (0.00558) | |
Time effects included | Yes | Yes | Yes | Yes |
Constant | 0.277 * | 0.335 ** | 0.401 ** | 0.428 *** |
(0.150) | (0.165) | (0.154) | (0.158) | |
Observations | 1058 | 1035 | 1058 | 1035 |
Number of regID | 107 | 107 | 107 | 107 |
Hansen test (p-value) | 0.209 | 0.817 | 0.665 | 0.960 |
AR (1) test (p-value) | 0.000 | 0.000 | 0.000 | 0.000 |
AR (2) test (p-value) | 0.717 | 0.733 | 0.748 | 0.770 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudronja, G.; Jugović, A.; Škalamera-Alilović, D. Seaports and Economic Growth: Panel Data Analysis of EU Port Regions. J. Mar. Sci. Eng. 2020, 8, 1017. https://doi.org/10.3390/jmse8121017
Mudronja G, Jugović A, Škalamera-Alilović D. Seaports and Economic Growth: Panel Data Analysis of EU Port Regions. Journal of Marine Science and Engineering. 2020; 8(12):1017. https://doi.org/10.3390/jmse8121017
Chicago/Turabian StyleMudronja, Gorana, Alen Jugović, and Dunja Škalamera-Alilović. 2020. "Seaports and Economic Growth: Panel Data Analysis of EU Port Regions" Journal of Marine Science and Engineering 8, no. 12: 1017. https://doi.org/10.3390/jmse8121017
APA StyleMudronja, G., Jugović, A., & Škalamera-Alilović, D. (2020). Seaports and Economic Growth: Panel Data Analysis of EU Port Regions. Journal of Marine Science and Engineering, 8(12), 1017. https://doi.org/10.3390/jmse8121017