Probabilistic Risk Evaluation for Overall Stability of Composite Caisson Breakwaters in Korea
Abstract
:1. Introduction
2. Selection of Reliability Approaches
3. Sliding and Overturning Failure Modes
3.1. Breakwater Structures and Wave Force Model
3.2. Performance Functions and Considered Random Variables
3.3. Reliability Analysis Using MVFOSM and FORM
3.4. Reliability Analysis Using MCS
3.5. Discussion on Sliding and Overturning modes
4. Bearing Capacity of Foundation by Circular Slip Failure Analysis
4.1. Selection of Bishop’s Simplified Method
4.2. Performance Function and Involved Random Variables
4.3. Result and Discussion of Bearing Capacity Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goda, Y. Random Seas and Design of Maritime Structures; University of Tokyo Press: Tokyo, Japan, 2000. [Google Scholar]
- Bruining, J.W. Wave Forces on Vertical Breakwaters. Reliability of Design Formula. Master’s Thesis, Degree-Granting University, Delft, The Netherlands, 1994. [Google Scholar]
- Takahashi, S.; Shimosako, K.-I.; Kimura, K.; Suzuki, K. Typical failures of composite breakwaters in Japan. In Proceedings of the 27th International Conference on Coastal Engineering (ICCE), Sydney, Australia, 16–21 July 2000; pp. 1899–1910. [Google Scholar]
- Takagi, H.; Esteban, M.; Shibayama, T. Stochastic Design of Caisson Breakwaters: Lessons from Past Failures and Coping with Climate Change; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 635–673. [Google Scholar] [CrossRef]
- Oumeraci, H. Review and analysis of vertical breakwater failures—Lessons learned. Coast. Eng. Spec. Issue Vert. Breakwaters 1994, 22, 3–29. [Google Scholar] [CrossRef]
- Kim, T.-M.; Takayama, T. Improved evaluation of the expected sliding distance of a caisson and practical parameters of uncertain factors. In Proceedings of the 2nd International Conference (Asian and Pacific Coasts, 2003), Makuhari, Japan, 29 February–4 March 2004; pp. 1–16. [Google Scholar] [CrossRef]
- Ministry of Oceans and Fisheries. Harbor and Fishing Port Design Standards; Ministry of Oceans and Fisheries: Seoul, Korea, 2014.
- Low, B.K.; Phoon, K.K. Reliability-based design and its complementary role to Eurocode 7 design approach. Comput. Geotech. 2014, 65, 30–44. [Google Scholar] [CrossRef]
- Van der Meer, J.W. Rock slopes and gravel beaches under wave attack. Ph.D. Thesis, Degree-Granting University, Delft, The Netherlands, 1988. [Google Scholar]
- Christiani, E. Application of Reliability in Breakwater Design. Ph.D. Thesis, Hydraulics & Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University University, Aalborg, Denmark, 1997. [Google Scholar]
- Burcharth, H.F. Introduction of partial coefficients in the design of rubble mound breakwaters. In Proceedings of the Conference on Coastal Structures and Breakwaters, ICE, London, UK, 1 January 1992; pp. 543–565. [Google Scholar]
- Burcharth, H.F.; Sorensen, J.D. Design of vertical wall caisson breakwaters using partial safety factors. In Proceedings of the 26th Conference on Coastal Engineering, Copenhagen, Denmark, 22–26 June 1998; pp. 2138–2151. [Google Scholar]
- Oumeraci, H.; Kortenhaus, A.; Allsop, W.; de Groot, M.; Crough, R.; Vrijling, H.; Voortman, H. Probabilistic Design Tools for Vertical Breakwaters; Swets & Zeitlinger, B.V.: Lisse, The Netherlands, 2001.
- Kim, S.W.; Suh, K.D. Application of reliability design methods to Donghae Harbor breakwater. Coast. Eng. J. 2006, 48, 31–57. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Suh, K.D. Reliability analysis of breakwater armor blocks: Case study in KOREA. Coast. Eng. J. 2010, 52, 331–350. [Google Scholar] [CrossRef]
- Hong, S.Y.; Suh, K.D.; Kweon, H.M. Calculation of expected sliding distance of breakwater caisson considering variability in wave direction. Coast. Eng. J. 2004, 46, 119–140. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Suh, K.D. Evaluation of target reliability indices and partial safety factors for sliding of caisson breakwaters. J. Coast. Res. 2011, 64, 622–626. [Google Scholar]
- Takayama, T.; Ikeda, N. Estimation of Sliding Failure Probability of Present Breakwaters for Probabilistic Design; Ministry of Transport: Yokosuka, Japan, 1992.
- Goda, Y.; Takagi, H. A Reliability design method of caisson breakwaters with optimal wave heights. Coast. Eng. J. 2000, 42, 357–387. [Google Scholar] [CrossRef]
- Kobayashi, M.; Terashi, M.; Takahashi, K. Bearing Capacity of a Rubble Mound Supporting a Gravity Structure; Ministry of Transport: Yokosuka, Japan, 1987.
- Takagi, H.; Esteban, M. Practical methods of estimating tilting failure of caisson breakwaters using a Monte-Carlo simulation. Coast. Eng. J. 2013, 55. [Google Scholar] [CrossRef]
- Shimosako, K.A.T.S. Reliability Design Method of Composite Breakwater Using Expected slIding Distance; Ministry of Transport: Yokosuka, Japan, 1998; pp. 4–30.
- Hanzawa, M.; Sato, H.; Takahashi, S.; Shimosako, K.; Takayama, T.; Tanimoto, K. New stability formula for wave-dissipating concrete blocks covering horizontally composite breakwaters. In Proceedings of the Coastal Engineering Conference, Orlando, FL, USA, 2–6 September 1996; pp. 1665–1678. [Google Scholar]
- Cornell, C.A. A probability-based structural code. ACI J. 1969, 66, 974–985. [Google Scholar] [CrossRef]
- Ang, A.H.; Tang, W.H. Probability Concepts in Engineering Planning and Design, Volume 2: Decision, Risk, and Reliability; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Hasofer, A.M.; Lind, N.C. Exact and Invariant Second-Moment Code Format. ASCE J. Eng. Mech. Div. 1974, 100, 111–121. [Google Scholar]
- Haldar, A.; Mahadevan, S. Probability, Reliability and Statistical Methods in Engineering Design; John Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- United States Army Corps of Engineers. Coastal Engineering Manual Part VI: Design of Coastal Project Elements (EM 1110-2-1100); Books Express Publishing: Washington, DC, USA, 2011; Volume 1100-2-110.
- MLIT. Technical standard and commentaries for port and harbor facilities in Japan; Ministry of Land, Infrastructure, Transport and Tourism (MLIT); Ports and Harbors Bureau: Tokyo, Japan, 2009.
- Goda, Y. New wave pressure formulae for composite breakwaters. In Proceedings of the Proceedings International Conference Coastal Engineering (ICCE), Copenhagen, Denmark, 24–28 June 1974; pp. 1702–1720. [Google Scholar]
- Van der Meer, J.W.; D’Angremond, K.; Juhl, J. Probabilistic calculations of wave forces on vertical structures. In Proceedings of the International Conference Coastal Engineering (ICCE), Kobe, Japan, 23–28 October 1994; American Society of Civil Engineers: Reston, VA, USA, 1994; pp. 1754–1767. [Google Scholar]
- Vrijling, J.K. Evaluation of uncertainties and statistical descriptions. In Proceedings of the Task 4 Workshop Hannover, MAST III, PROVERBS-Project: Probabilistic Design Tools for Vertical Breakwaters, Hannover, Germany, September 1996. [Google Scholar]
- Ching, J.; Phoon, K.K.; Hu, Y.G. Efficient evaluation of reliability for slopes with circular slip surfaces using importance sampling. J. Geotech. Geoenviron. Eng. 2009, 135, 768–777. [Google Scholar] [CrossRef]
- Allen, T.M.; Nowak, A.S.; Bathurst, R.J. Calibration to Determine Load and Resistance Factors for Geotechnical and Structural Design. Transp. Res. Circ. 2005. [Google Scholar] [CrossRef]
- Duncan, J.M.; Wright, S.G. The accuracy of equilibrium methods of slope stability analysis. Eng. Geol. 1980, 16, 5–7. [Google Scholar] [CrossRef]
- Vrijling, J.K. Probabilistic Design Tools for Vertical Breakwaters. Final Report. Volume IId. Probabilistic Aspects; Swets & Zeitlinger, B.V.: Lisse, The Netherlands, 1999.
- Bhattacharya, G.; Jana, D.; Ojha, S.; Chakraborty, S. Direct search for minimum reliability index of earth slopes. Comput. Geotech. 2003, 30, 455–462. [Google Scholar] [CrossRef]
- Chowdhury, R.N.; Xu, D.W. Geotechnical system reliability of slopes. Reliab. Eng. Syst. Saf. 1995, 47, 141–151. [Google Scholar] [CrossRef]
- Cho, S.E. Effects of spatial variability of soil properties on slope stability. Eng. Geol. 2007, 92, 97–109. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Fenton, G.A.; Denavit, M.D. Traditional and advanced probabilistic slope stability analysis. In Proceedings of the Geotechnical Special Publication, Denver, CO, USA, 18–21 February 2007; p. 19. [Google Scholar]
- Bishop, A.W. The use of the slip circle in the stability analysis of slopes. Geotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
No. | Breakwater | Geometry Parameter | Ocean Condition | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bc | Hc_Sea | Hc_Har | hr | h | h′ | d | HD | WL | ||
1 | Donghae | 20.0 | 16.0 | 16.0 | 6.1 | 16.99 | 10.89 | 8.29 | 10.8 | 0.20 |
2 | Pohang | 14.0 | 12.0 | 12.0 | 3.5 | 11.75 | 8.25 | 7.25 | 8.58 | 0.12 |
3 | Ulsan | 19.0 | 21.5 | 17.5 | 3.0 | 18.66 | 15.66 | 14.16 | 9.9 | 0.30 |
4 | Onsan | 14.0 | 18.5 | 16.0 | 9.0 | 19.84 | 14.11 | 13.11 | 5.76 | 0.30 |
5 | Busan | 24.0 | 21.5 | 20.7 | 8.5 | 25.44 | 16.94 | 15.39 | 10.8 | 0.72 |
6 | Gamcheon | 20.0 | 18.0 | 17.5 | 3.0 | 17.28 | 14.28 | 12.08 | 10.8 | 0.64 |
7 | Jeju Outer | 24.0 | 25.8 | 22.8 | 1.3 | 24.83 | 17.83 | 16.03 | 11.7 | 1.42 |
8 | Jeju Aewol | 27.4 | 23.5 | 20.5 | 1.5 | 13.86 | 13.36 | 12.36 | 14.04 | 1.43 |
9 | Gunsan | 18.0 | 19.0 | 18.0 | 2.0 | 15.75 | 13.75 | 13.15 | 10.08 | 3.62 |
No. | Notation | Mean of Bias | COV of Bias | Distribution | Random Variable |
---|---|---|---|---|---|
1 | fc | 1.06 | 0.15 | Normal | Friction coefficient |
2 | Wc | 1.02 | 0.02 | Normal | Weight of concrete |
3 | Wrc | 0.98 | 0.02 | Normal | Weight of reinforced concrete |
4 | Wf | 1.02 | 0.04 | Normal | Filling material |
5 | Fu | 0.77 | 0.260 | Normal | Vertical wave force |
6 | Fh | 0.90 | 0.222 | Normal | Horizontal wave force |
7 | W | 1.00 | COV 1 | Normal | Tidal level |
Parameter | Van der Meer et al. [31] | Vrijling [32] | CEM 2011 [28] | |
---|---|---|---|---|
No Model Tests | Model Test Performed | |||
Horizontal force, Fh | N(0.90, 0.20) | LN(0.90, 0.20) | N(0.90, 0.25) | N(0.90, 0.05) |
Horizontal moment, Mh | N(0.81, 0.37) | LN(0.72, 0.37) | N(0.81, 0.40) | N(0.81, 0.10) |
Vertical force, Fu | N(0.77, 0.20) | LN(0.77, 0.20) | N(0.77, 0.25) | N(0.77, 0.05) |
Vertical moment, Mu | N(0.72, 0.34) | LN(0.72, 0.34) | N(0.72, 0.37) | N(0.72, 0.10) |
No. | Port | Sensitivity | β | |||||||
---|---|---|---|---|---|---|---|---|---|---|
fc | Wc | Wrc | Wf | Fu | Fh | WL | FORM | MVFOSM | ||
1 | Donghae | 0.700 | 0.042 | 0.025 | 0.132 | −0.158 | −0.682 | −0.016 | 1.671 | 1.692 |
2 | Pohang | 0.693 | 0.039 | 0.026 | 0.141 | −0.164 | −0.686 | −0.013 | 1.608 | 1.624 |
3 | Ulsan | 0.714 | 0.032 | 0.026 | 0.172 | −0.121 | −0.667 | −0.021 | 1.843 | 1.873 |
4 | Onsan | 0.837 | 0.015 | 0.032 | 0.151 | −0.060 | −0.521 | −0.022 | 3.325 | 3.295 |
5 | Busan | 0.670 | 0.042 | 0.026 | 0.181 | −0.183 | −0.694 | −0.033 | 1.441 | 1.557 |
6 | Gamcheon | 0.681 | 0.038 | 0.033 | 0.153 | −0.169 | −0.692 | −0.050 | 1.510 | 1.616 |
7 | Jeju Outer | 0.738 | 0.032 | 0.029 | 0.160 | −0.117 | −0.642 | −0.052 | 2.125 | 2.302 |
8 | Jeju Aewol | 0.702 | 0.029 | 0.022 | 0.162 | −0.160 | −0.672 | −0.051 | 1.755 | 1.936 |
9 | Gunsan | 0.697 | 0.025 | 0.029 | 0.176 | −0.147 | −0.675 | −0.068 | 1.705 | 1.799 |
Notation | Mean of Bias | COV of Bias | Distribution | Random Variable |
---|---|---|---|---|
tanϕ | 1.00 | 0.10 | Normal | Internal friction angle |
c | 1.00 | 0.10 | Normal | Cohesion force |
γ | 1.00 | 0.10 | Normal | Saturated soil density of Armor |
0.03 | Saturated soil density of Sand | |||
0.02 | Saturated soil density of Clay | |||
0.02 | Saturated soil density of Rock |
No. | Port | Pf (×10−3) | β | μFS | σFS | COVFS | Skewness | Error of Pf (%) |
---|---|---|---|---|---|---|---|---|
1 | Donghae | 6.53 | 2.805 | 1.506 | 0.299 | 0.187 | 0.688 | 0.06 |
2 | Pohang | 10.19 | 2.658 | 1.495 | 0.321 | 0.201 | 0.788 | 0.05 |
3 | Ulsan | 0.81 | 3.419 | 1.897 | 0.484 | 0.236 | 0.885 | 0.18 |
4 | Onsan | 2.51 | 3.101 | 1.553 | 0.293 | 0.178 | 0.619 | 0.10 |
5 | Busan | 1.09 | 3.339 | 1.704 | 0.341 | 0.188 | 0.662 | 0.16 |
6 | Gamcheon | 1.70 | 3.214 | 1.727 | 0.425 | 0.228 | 1.001 | 0.13 |
7 | Jeju Outer | 1.28 | 3.294 | 1.622 | 0.304 | 0.177 | 0.628 | 0.14 |
8 | Jeju Aewol | 0.54 | 3.527 | 1.894 | 0.519 | 0.252 | 1.046 | 0.22 |
9 | Gunsan | 0.20 | 3.769 | 1.928 | 0.472 | 0.227 | 0.920 | 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, N.S.; Huh, J.; Mac, V.H.; Kim, D.; Kwak, K. Probabilistic Risk Evaluation for Overall Stability of Composite Caisson Breakwaters in Korea. J. Mar. Sci. Eng. 2020, 8, 148. https://doi.org/10.3390/jmse8030148
Doan NS, Huh J, Mac VH, Kim D, Kwak K. Probabilistic Risk Evaluation for Overall Stability of Composite Caisson Breakwaters in Korea. Journal of Marine Science and Engineering. 2020; 8(3):148. https://doi.org/10.3390/jmse8030148
Chicago/Turabian StyleDoan, Nhu Son, Jungwon Huh, Van Ha Mac, Dongwook Kim, and Kiseok Kwak. 2020. "Probabilistic Risk Evaluation for Overall Stability of Composite Caisson Breakwaters in Korea" Journal of Marine Science and Engineering 8, no. 3: 148. https://doi.org/10.3390/jmse8030148
APA StyleDoan, N. S., Huh, J., Mac, V. H., Kim, D., & Kwak, K. (2020). Probabilistic Risk Evaluation for Overall Stability of Composite Caisson Breakwaters in Korea. Journal of Marine Science and Engineering, 8(3), 148. https://doi.org/10.3390/jmse8030148