Hydrodynamics and Morphodynamics Performance Assessment of Three Coastal Protection Structures
Abstract
:1. Introduction
2. Characterization of the Study Area
3. Materials and Methods
3.1. SWAN and XBeach Numerical Models
3.2. Simulated Scenarios
4. Results
4.1. SWAN Hydrodynamics
4.2. XBeach Hydrodynamics
4.3. SWAN vs. XBeach Hydrodynamics
4.4. Morphodynamics
4.5. Storm Scenario: Hydrodynamics and Morphodynamics
5. Discussion
5.1. SWAN Hydrodynamic Results
5.2. XBeach Hydrodynamic Results
5.3. SWAN vs. XBeach Hydrodynamic Results
5.4. Morphodynamic Results
5.5. Storm Scenario: Hydrodynamic and Morphodynamic Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Antunes do Carmo, J.S. Coastal Adaptation: Past Behaviors, Contemporary Management, and Future Options. In Coastal and Marine Environments—Physical Processes and Numerical Modelling; IntechOpen: London, UK, 2019; p. 20. [Google Scholar]
- Antunes do Carmo, J.S. The changing paradigm of coastal management: The Portuguese case. Sci. Total. Environ. 2019, 695, 133807. [Google Scholar] [CrossRef] [PubMed]
- Bergillos, R.J.; Rodríguez-Delgado, C.; Millares, A.; Ortega-Sánchez, M.; Losada, M.A. Impact of river regulation on a Mediterranean delta: Assessment of managed versus unmanaged scenarios. Water Resour. Res. 2016, 52, 5132–5148. [Google Scholar] [CrossRef]
- Reis, C.S.; Carmo, J.A.D.; Freitas, H. Learning with Nature: A Sand Dune System Case Study (Portugal). J. Coast. Res. 2008, 246, 1506–1515. [Google Scholar] [CrossRef]
- Granja, H.; Pinho, J.L. Coastal Defense in NW Portugal: The Improbable Victory. In Pitfalls of Shoreline Stabilization: Selected Case Studies; Cooper, J.A.G., Pilkey, O.H., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 251–266. [Google Scholar]
- Narra, P.; Coelho, C.; Sancho, F.; Palalane, J. CERA: An open-source tool for coastal erosion risk assessment. Ocean Coast. Manag. 2017, 142, 1–14. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development A/RES/70/1; UN General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Weinberg, J. The Big Squeeze: Coastal Megacities Face Growing Pressure from Sea and Land; Stockholm Waterfront: Stockholm, Sweden, 2015; pp. 5–7. [Google Scholar]
- Castelle, B.; Guillot, B.; Marieu, V.; Chaumillon, E.; Hanquiez, V.; Bujan, S.; Poppeschi, C. Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy coast from 1950 to 2014: SW France. Estuarine Coast. Shelf Sci. 2018, 200, 212–223. [Google Scholar] [CrossRef]
- EEA. European Environment Agency—The Changing Faces of Europe’s Coastal Areas; Office for Official Publications of the European Communities: Copenhagen, Denmark, 2006. [Google Scholar]
- Gilbert, J.; Vellinga, P. Climate Change: The IPCC Response Strategies - Chapter 5. In Report prepared for Intergovernmental Panel on Climate Change by Working Groups III; Digitization and Microform Unit (2010), UNOG Library: Genève, Switzerland, 1990; p. 330. [Google Scholar]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of working groups I and II of the Intergovernamental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Adriana-Gracia, C.; Rangel-Buitrago, N.; Oakley, J.A.; Williams, A. Use of ecosystems in coastal erosion management. Ocean Coast. Manag. 2018, 156, 277–289. [Google Scholar] [CrossRef]
- Charlier, R.H.; Chaineux, M.C.P.; Morcos, S. Panorama of the History of Coastal Protection. J. Coast. Res. 2005, 211, 79–111. [Google Scholar] [CrossRef] [Green Version]
- Griggs, G.B. The impacts of coastal armoring. Shore Beach 2005, 73, 13–22. [Google Scholar]
- Pilkey, O.H.; Cooper, J.A.G. The Last Beach; Duke University Press: Durham, NC, USA, 2014. [Google Scholar]
- Pranzini, E.; Williams, A.T. Coastal Erosion and Protection in Europe, 1st ed.; Routledge: London, UK, 2013. [Google Scholar]
- Rangel-Buitrago, N.; Williams, A.; Anfuso, G. Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls. Ocean Coast. Manag. 2018, 156, 58–75. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Pilarczyk, K. Remarks on Coastal Stabilization and Alternative Solutions. In Handbook of Coastal and Ocean Engineering; World Scientific: Singapore, 2009; pp. 521–551. [Google Scholar]
- Bergillos, R.J.; López-Ruiz, A.; Medina-Lopez, E.; Moñino, A.; Ortega-Sánchez, M. The role of wave energy converter farms on coastal protection in eroding deltas, Guadalfeo, southern Spain. J. Clean. Prod. 2018, 171, 356–367. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Turner, I.; Symonds, G. Shoreline response to multi-functional artificial surfing reefs: A numerical and physical modelling study. Coast. Eng. 2006, 53, 589–611. [Google Scholar] [CrossRef]
- Black, K.P.; Andrews, C.J. Sandy Shoreline Response to Offshore Obstacles Part 1: Salient and Tombolo Geometry and Shape. J. Coast. Res. 2001, 29, 82–93. [Google Scholar]
- Ranasinghe, R.; Turner, I. Shoreline response to submerged structures: A review. Coast. Eng. 2006, 53, 65–79. [Google Scholar] [CrossRef]
- Mendonça, A.; Fortes, C.; Capitão, R.; Neves, M.; Moura, T.; Carmo, J.S.A.D. Wave hydrodynamics around a multi-functional artificial reef at Leirosa. J. Coast. Conserv. 2012, 16, 543–553. [Google Scholar] [CrossRef]
- Mendonça, A.; Fortes, C.; Capitão, R.; Neves, M.; Carmo, J.S.A.D.; Moura, T. Hydrodynamics around an Artificial Surfing Reef at Leirosa, Portugal. J. Waterw. Port Coastal Ocean Eng. 2012, 138, 226–235. [Google Scholar] [CrossRef]
- Lynett, P.J.; Liu, P.L.-F. Modeling Wave Generation, Evolution, and Interaction with Depth-Integrated, Dispersive Wave Equations. COULWAVE Code Manual. In Long and Intermediate Wave Modeling Package, v. 2.0; Cornell University: Ithaca, NY, USA, 2008; p. 90. [Google Scholar]
- SWAN. SWAN Manual. 2018. Available online: http://swanmodel.sourceforge.net/online_doc/swanuse/node3.html (accessed on 8 February 2019).
- Deltares. XBeach. 2019. Available online: https://www.deltares.nl/en/software/xbeach (accessed on 12 February 2019).
- Pinho, J.; Vieira, J.M.P.; Carmo, J.S.A.D. Hydroinformatic environment for coastal waters hydrodynamics and water quality modelling. Adv. Eng. Softw. 2004, 35, 205–222. [Google Scholar] [CrossRef]
- Paredes, R.; Callapez, P.M.; Danielsen, R.; Dinis, P.; Carvalho, M.; Soares, A.F. Paleoecologia da malacofauna salobra e biofácies da laguna holocénica de Leirosa (Figueira da Foz) / Paleoecology of brackish malacofauna and biofacies of the holocene lagoon of Leirosa (Figueira da Foz)). In Proceedings of the VII National Geology Congress, Estremoz, Portugal, 5–7 July 2006; pp. 737–740. [Google Scholar]
- Rocha, F.; Bernardes, C. Caracterização mineralógica dos níveis lodosos no sistema de dunas costeiras a sul do Cabo Mondego (Leirosa, Portugal) / Mineralogical characterization of muddy levels in the coastal dune system south of Cabo Mondego (Leirosa, Portugal). Estud. do Quaternário / Quat. Stud. 1997, 72, 67–72. [Google Scholar] [CrossRef]
- Deltares. Delft3D 4 Suite (structured). 2019. Available online: https://www.deltares.nl/en/software/delft3d-4-suite (accessed on 7 February 2019).
- Capitão, R.; Fortes, C. Análise comparativa entre estimativas do modelo SWAN e medições de agitação marítima efectuadas na Praia da Amoreira, Portugal / Comparative analysis between estimates of SWAN model and field measurements of sea waves at Praia da Amoreira, Portugal. Rev. Gestão Costeira Integr./J. Integr. Coast. Zone Manag. 2011, 11, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Bolle, A.; Mercelis, P.; Roelvink, D.; Haerens, P.; Trouw, K. Application and Validation of Xbeach for Three Different Field Sites. In Proceedings of the 32nd Conference on Coastal Engineering, Shanghai, China, 30 June–5 July 2010; pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- Roelvink, D.; McCall, R.; Mehvar, S.; Nederhoff, K.; Dastgheib, A. Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup. Coast. Eng. 2018, 134, 103–123. [Google Scholar] [CrossRef]
- Vieira, B.F.V. Wave Hydrodynamics in Coastal Stretches Influenced by Detached Breakwaters. Master’s Thesis, Civil Engineering, University of Minho, Guimarães, Portugal, 2014. [Google Scholar]
- Bin Ab Razak, M.S.; Nor, N.A.Z.M. XBeach Process-Based Modelling of Coastal Morphological Features Near Breakwater. MATEC Web Conf. 2018, 203, 1007. [Google Scholar] [CrossRef] [Green Version]
- Hanson, H. Wave transformation, 2019, [Online]. Available online: http://www.tvrl.lth.se/fileadmin/tvrl/files/vvr040/3_Wave_transformation_3pp.pdf (accessed on 28 October 2019).
- MetED. Wave Energy Equation. Wave Types and Characteristics. 2012. Available online: https://www.meted.ucar.edu/marine/mod1_wv_type_char/print.htm#page_4.5.4 (accessed on 5 November 2019).
Structure Geometry | |||
Submerged Detached Breakwater | Emerged Detached Breakwater | MFAR | |
Length (m) | 250 | 250 | 250 |
Crest level (m) | −1.5 | 1.0 | −1.5 |
Crest width (m) | 10 | 10 | 75 |
Side slope | 2:1 | 2:1 | 1:10 |
Opening angle (°) | − | − | 45 |
Distance to shoreline (m) | 440 | 440 | 440 |
Numerical Model Conditions | |||
SWAN (hydrodynamics) | XBeach (hydrodynamics) | XBeach (morphodynamics) | |
Tide level (m) | 0 | 0 | 0 |
Wave condition | Frequent | Frequent | Frequent |
Wave directions | West and northwest | West and northwest | West and northwest |
Wave condition (extra scenario for MFAR) | − | Storm | Storm |
Wave direction (extra scenario for MFAR) | − | West | West |
Boundary conditions for frequent wave scenario (west) | North, west, and south: Hs = 1.5 m, T = 9 s, Direction = 270° | Front and back: abs_2d Left and right: wall | Front and back: abs_2d Left and right: wall |
Boundary conditions for frequent wave scenario (northwest) | North, west, and south: Hs = 1.5 m, T = 9 s, Direction = 315° | Front and back: abs_2d Left and right: wall | Front and back: abs_2d Left and right: wall |
Boundary conditions for storm wave scenario | − | Front and back: abs_2d Left and right: wall | Front and back: abs_2d Left and right: wall |
Sediments dimensions (µm) | − | − | D50 = 200 D90 = 300 |
Morphological acceleration factor (morfac) | − | − | 100 |
Chèzy | − | − | 60 |
Directional energy distribution (dtheta) | − | − | 10 |
Wave type process | JONSWAP spectrum | JONSWAP spectrum | Stationary mode |
Simulation time (hours) | 2 | 2 | 1800 |
Computational domain (m) | 1670 × 1870 (crosshore × longshore) | ||
Grid spatial resolution (m) | dx = dy = 5 |
Structure: Submerged Detached Breakwater | ||||
Model | Hs = 1.5 m, T = 9 s, West Wave Direction | |||
Before (m) | After (m) | Reduction (%) | Energy Reduction (%) | |
SWAN | 1.49 | 1.24 | 16.77 | 30.72 |
XBeach | 1.54 | 1.06 | 31.00 | 52.38 |
SWAN - XBeach | −0.05 | 0.18 | − | − |
Structure: Emerged Detached Breakwater | ||||
Model | Hs = 1.5 m, T = 9 s, West Wave Direction | |||
Before (m) | After (m) | Reduction (%) | Energy Reduction (%) | |
SWAN | 1.49 | 0.37 | 75.4 | 93.9 |
XBeach | 1.49 | 0.80 | 46.1 | 71.0 |
SWAN - XBeach | 0.00 | −0.43 | ||
Structure: MFAR | ||||
Model | Hs = 1.5 m, T = 9 s, West Wave Direction | |||
Before (m) | After (m) | Reduction (%) | Energy Reduction (%) | |
SWAN | 1.49 | 1.14 | 23.30 | 41.17 |
XBeach | 1.54 | 0.95 | 38.21 | 61.82 |
SWAN - XBeach | −0.05 | 0.19 | − | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, B.F.V.; Pinho, J.L.S.; Barros, J.A.O.; Antunes do Carmo, J.S. Hydrodynamics and Morphodynamics Performance Assessment of Three Coastal Protection Structures. J. Mar. Sci. Eng. 2020, 8, 175. https://doi.org/10.3390/jmse8030175
Vieira BFV, Pinho JLS, Barros JAO, Antunes do Carmo JS. Hydrodynamics and Morphodynamics Performance Assessment of Three Coastal Protection Structures. Journal of Marine Science and Engineering. 2020; 8(3):175. https://doi.org/10.3390/jmse8030175
Chicago/Turabian StyleVieira, Bárbara F. V., José L. S. Pinho, Joaquim A. O. Barros, and José S. Antunes do Carmo. 2020. "Hydrodynamics and Morphodynamics Performance Assessment of Three Coastal Protection Structures" Journal of Marine Science and Engineering 8, no. 3: 175. https://doi.org/10.3390/jmse8030175
APA StyleVieira, B. F. V., Pinho, J. L. S., Barros, J. A. O., & Antunes do Carmo, J. S. (2020). Hydrodynamics and Morphodynamics Performance Assessment of Three Coastal Protection Structures. Journal of Marine Science and Engineering, 8(3), 175. https://doi.org/10.3390/jmse8030175