Analysis of Operational Efficiency Considering Safety Factors as an Undesirable Output for Coastal Ferry Operators in Korea
Abstract
:1. Introduction
2. Literature Review
2.1. Data Envelopment Analysis (DEA)
2.2. DEA Application Studies in Maritime Logistics
3. Methodology
3.1. Design of SBM Model
- n is the coastal ferry operator ;
- represents inputs ;
- represents desirable outputs (r=1,2,⋯,R);
- represents the specific observation value of the ith input of coastal ferry operator k;
- is the observed amount of the ith input of jth coastal ferry operator;
- represents the observed amount of the rth desirable output of coastal ferry operator k;
- is the observed amount of rth desirable output of the jth coastal ferry operator;
- represents the specific observation value of undesirable output of coastal ferry operator k;
- is the observed amount of undesirable output of the jth coastal ferry operator;
- indicates the value of the ith input slack;
- is the value of the rth desirable output slack; and
- is the value of undesirable output slack.
3.2. Selection of Variables
3.3. Data Description
4. Efficiency Measurement Results
5. Discussion and Implications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korea Shipping Association. Status of Coastal Passenger Transportation Services in 2018. Available online: https://www.theksa.or.kr/site/main/board/sub05_08_01_04/54033?cp=1&sortOrder=BA_REGDATE&sortDirection=DESC&listType=list&bcId=sub05_08_01_04&baNotice=false&baCommSelec=false&baOpenDay=false&baUse=true (accessed on 21 May 2019).
- Ministry of Oceans and Fisheries. Maritime Safety Act (Act No.16162, 31 December 2018). Available online: http://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2§ion=lawNm&query=%ED%95%B4%EC%82%AC%EC%95%88%EC%A0%84%EB%B2%95&x=0&y=0#liBgcolor2 (accessed on 5 May 2020).
- Ministry of Oceans and Fisheries. Marine Transportation Act (Act No.15011, 31 October 2017). Available online: http://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2§ion=lawNm&query=%ED%95%B4%EC%9A%B4%EB%B2%95&x=0&y=0#liBgcolor12 (accessed on 5 May 2020).
- Ministry of Oceans and Fisheries. Ship Safety Act (Act No.13002, 6 January 2015). Available online: http://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2§ion=lawNm&query=%ED%95%B4%EC%82%AC%EC%95%88%EC%A0%84%EB%B2%95&x=0&y=0#liBgcolor1 (accessed on 5 May 2020).
- Pak, J.Y.; Yeo, G.T.; Oh, S.W.; Yang, Z. Port safety evaluation from a captain’s perspective: The Korean experience. Saf. Sci. 2015, 72, 172–181. [Google Scholar] [CrossRef]
- Hong, S.W.; Lee, J.Y.; Sehan Lim, S.H. Navigational threats by derelict fishing gear to navy ships in the Korean seas. Mar. Pollut. Bull. 2017, 119, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.K.K.; Huang, S.H.S.; Yeh, R.F.J. An assessment model of safety factors for product tankers in coastal shipping. Saf. Sci. 2015, 76, 74–81. [Google Scholar] [CrossRef]
- MOF, The Ministry of Oceans and Fisheries. Implementation Plan for Maritime Safety in 2018. Available online: http://www.mof.go.kr/article/view.do?articleKey=19962&boardKey=25&menuKey=389¤tPageNo=1 (accessed on 21 May 2020).
- Ma, Y.H.; Zhao, Q.; Xi, M. Decision-makings in safety investment: An opportunity cost perspective. Saf. Sci. 2016, 83, 31–39. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis, a Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Esmaeili, M. A slack-based measure of efficiency for the case of exogenously fixed factors. Expert Syst. Appl. 2009, 36, 4822–4825. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.Y.; Lu, W.M.; Lin, B.J.Y. Data envelopment analysis 1978–2010: A citation-based literature survey. Omega 2013, 41, 3–15. [Google Scholar] [CrossRef]
- Tone, K. Slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. Dealing with undesirable outputs in DEA: A slacks-based measure (SBM) approach. N. Am. Product. Workshop 2004, 2004, 44–45. [Google Scholar]
- Aldamak, A.; Zolfaghari, S. Review of efficiency ranking methods in data envelopment analysis. Measurement 2017, 106, 161–172. [Google Scholar] [CrossRef]
- Panayides, P.M.; Lambertides, N.; Savva, C.S. The relative efficiency of shipping companies. Transp. Res. E Logist. Transp. Rev. 2011, 47, 681–694. [Google Scholar] [CrossRef]
- Lu, C.C.; Chiu, Y.H.; Shyu, M.K.; Lee, J.H. Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model. Econ. Model. 2013, 32, 130–135. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Chou, H.W.; Lee, C.Y.; Chen, H.K.; Tsai, M.Y. Evaluating airlines with slack-based measures and meta-frontiers. J. Adv. Transp. 2016, 50, 1061–1089. [Google Scholar] [CrossRef]
- Hjalmarsson, L.; Odeck, J. Efficiency of trucks in road construction and maintenance: An evaluation with data envelopment analysis. Comput. Oper. Res. 1996, 23, 393–404. [Google Scholar] [CrossRef]
- Merkert, R.; Mangia, L. Management of airports in extreme winter conditions? Some lessons from analysing the efficiency of Norwegian airports. Res. Transp. Bus. Manag. 2012, 4, 53–60. [Google Scholar] [CrossRef]
- Andrejić, M.; Bojović, N.; Kilibarda, M. A framework for measuring transport efficiency in distribution centers. Transp. Policy 2016, 45, 99–106. [Google Scholar] [CrossRef]
- Sameni, M.K.; Preston, J.; Sameni, M.K. Evaluating efficiency of passenger railway stations: A DEA approach. Res. Transp. Bus. Manag. 2016, 20, 33–38. [Google Scholar] [CrossRef]
- Cowie, J. Long term productivity gains in the privatised British passenger rail industry? A case study of Malmquist productivity index measurements. Res. Transp. Bus. Manag. 2018, 28, 3–11. [Google Scholar] [CrossRef]
- Xu, J.; Li, B.; Wu, D. Rough data envelopment analysis and its application to supply chain performance evaluation. Int. J. Product. Econ. 2009, 122, 628–638. [Google Scholar] [CrossRef]
- Wilmsmeier, G.; Tovar, B.; Sanchez, R.J. The evolution of container terminal productivity and efficiency under changing economic environments. Res. Transp. Bus. Manag. 2013, 8, 50–66. [Google Scholar] [CrossRef]
- Bergantino, A.S.; Musso, E.; Porcelli, F. Port management performance and contextual variables: Which relationship? Methodological and empirical issues. Res. Transp. Bus. Manag. 2013, 8, 39–49. [Google Scholar] [CrossRef]
- Schøyen, H.; Bjorbæk, C.T.; Steger-Jensen, K.; Bouhmala, N.; Burki, U.; Jensen, T.E.; Berg, Ø. Measuring the contribution of logistics service delivery performance outcomes and deep-sea container liner connectivity on port efficiency. Res. Transp. Bus. Manag. 2018, 28, 66–76. [Google Scholar] [CrossRef]
- Schøyen, H.; Odeck, J. The technical efficiency of Norwegian container ports: A comparison to some Nordic and UK container ports using data envelopment analysis (DEA). Mar. Econ. Logist. 2013, 15, 197–221. [Google Scholar] [CrossRef]
- Odeck, J. Efficiency and productivity in the transportation sector. Res. Transp. Bus. Manag. 2018, 28, 1–2. [Google Scholar] [CrossRef]
- Lun, V.Y.; Marlow, P. The impact of capacity on firm performance: A study of the liner shipping industry. Int. J. Shipp. Transp. Logist. 2011, 3, 57–71. [Google Scholar] [CrossRef]
- Bang, H.S.; Kang, H.W.; Martin, J.; Woo, S.H. The impact of operational and strategic management on liner shipping efficiency: A two-stage DEA approach. Mar. Policy Manag. 2012, 39, 653–672. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Lozano, S.; Furió, S. Evaluating efficiency of international container shipping lines: A bootstrap DEA approach. Mar. Econ. Logist. 2013, 16, 55–71. [Google Scholar] [CrossRef]
- Huang, W.H.; Chao, S.L.; Chang, C.C. Assessment of differences in efficiency across strategic groups in the container shipping context: A data envelopment analysis. Int. J. Shipp. Transp. Logist. 2017, 9, 651–672. [Google Scholar] [CrossRef]
- Chang, Y.T.; Lee, S.H.; Park, H.S. Efficiency analysis of major cruise lines. Tour. Manag. 2017, 58, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semiparametric models of production processes. J. Econ. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Chao, S.L. Integrating multi-stage data envelopment analysis and a fuzzy analytical hierarchical process to evaluate the efficiency of major global liner shipping companies. Mar. Policy Manag. 2017, 44, 496–511. [Google Scholar] [CrossRef]
- Kao, C.; Hwang, S.N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 2008, 185, 418–429. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA DEA with network structure: A slack-based measure approach. Omega 2014, 42, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Chao, S.L.; Ming-Miin Yu, M.M.; Hsieh, W.F. Evaluating the efficiency of major container shipping companies: A framework of dynamic network DEA with shared inputs. Transp. Res. A Policy Pract. 2018, 117, 44–57. [Google Scholar] [CrossRef]
- Gong, X.; Wu, X.; Luo, M. Company performance and environmental efficiency: A case study for shipping enterprises. Transp. Policy 2019, 82, 96–106. [Google Scholar] [CrossRef]
- Försund, F. A comparison of parametric and non-parametric efficiency measures: The case of Norwegian ferries. J. Product. Anal. 1992, 3, 24–45. [Google Scholar] [CrossRef]
- Yu, M.M.; Chen, L.H.; Hsiao, B. A performance-based subsidy allocation of ferry transportation: A data envelopment approach. Transp. Policy 2018, 68, 13–19. [Google Scholar] [CrossRef]
- Du, J.; Cook, W.D.; Liang, L.; Zhu, J. Fixed cost and resource allocation based on DEA cross-efficiency. Eur. J. Oper. Res. 2014, 235, 206–214. [Google Scholar] [CrossRef]
- Försund, F.; Hjalmarsson, L. Generalized Farrell measures of efficiency: An application to milk processing in Swedish dairy plants. Econ. J. 1979, 89, 294–315. [Google Scholar] [CrossRef]
- Park, S.H.; Pham, T.Y.; Yeo, G.T. The impact of ferry disasters on operational efficiency of the South Korean coastal ferry industry: A DEA-window analysis. Asian J. Shipp. Logist. 2018, 34, 248–257. [Google Scholar] [CrossRef]
- Weber, M.M.; Weber, W.L. Productivity and efficiency in the trucking industry: Accounting for traffic fatalities. Int. J. Phys. Distrib. Logist. Manag. 2004, 34, 39–61. [Google Scholar] [CrossRef]
- Yu, M.M.; Fan, C.K. Measuring the cost effectiveness of multimode bus transit in the presence of accident risks. Transp. Plan. Technol. 2006, 29, 383–407. [Google Scholar] [CrossRef]
- Chen, C.M.; Du, J.; Huo, J.; Zhu, J. Undesirable factors in integer-valued DEA: Evaluating the operational efficiencies of city bus systems considering safety records. Decis. Support Syst. 2012, 54, 330–335. [Google Scholar] [CrossRef]
- Egilmez, G.; McAvoy, D. Benchmarking road safety of U.S. states: A DEA-based Malmquist productivity index approach. Accid. Anal. Prev. 2013, 53, 55–64. [Google Scholar] [CrossRef]
- Pal, D.; Mitra, S.K. An application of the directional distance function with the number of accidents as an undesirable output to measure the technical efficiency of state road transport in India. Transp. Res. A Policy Pract. 2016, 93, 1–12. [Google Scholar] [CrossRef]
- Barak, S.; Dahooei, J.H. A novel hybrid fuzzy DEA-fuzzy MADM method for airlines safety evaluation. J. Air Transp. Manag. 2018, 73, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Roets, B.; Verscheldec, M.; Christiaens, J. Multi-output efficiency and operational safety: An analysis of railway traffic control centre performance. Eur. J. Oper. Res. 2018, 271, 224–237. [Google Scholar] [CrossRef]
- Djordjević, B.; Krmaca, E.; Mlinarićb, T.J. Non-radial DEA model: A new approach to evaluation of safety at railway level crossings. Saf. Sci. 2018, 103, 234–246. [Google Scholar] [CrossRef]
- Stolzer, A.J.; Friend, M.A.; Truong, D.; Tuccio, W.A.; Aguiar, M. Measuring and evaluating safety management system effectiveness using data envelopment analysis. Saf. Sci. 2018, 104, 55–69. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Korhonen, P.J.; Luptacik, M. Eco-efficiency analysis of power plants: An extension of data envelopment analysis. Eur. J. Oper. Res. 2004, 154, 437–446. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.K.; Pasurka, C. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 28, 90–98. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Tyteca, D. Linear programming models for the measurement of environmental performance of firms–Concepts and empirical results. J. Product. Anal. 1997, 8, 183–197. [Google Scholar] [CrossRef]
- Boyd, G.A.; McClelland, J.D. The impact of environmental constraints on productivity improvement in integrated paper plants. J. Environ. Econ. Manag. 1999, 38, 121–142. [Google Scholar] [CrossRef]
- Hernández-Sancho, F.; Molinos-Senante, M.; Sala-Garrido, R. Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Sci. Total Environ. 2000, 408, 953–957. [Google Scholar] [CrossRef]
- Zaim, O. Measuring environmental performance of state manufacturing through changes in pollution intensities: A DEA framework. Ecol. Econ. 2004, 48, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Färe, R.; Grosskopf, S.; Hernandez-Sancho, F. Environmental performance: An index number approach. Resour. Energy Econ. 2004, 26, 343–352. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Modeling undesirable factors in efficiency evaluation: Comment. Eur. J. Oper. Res. 2004, 157, 242–245. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2006, 60, 111–118. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Lozano, S.; Gutierrez, E. Slacks-based measure of efficiency of airports with airplanes delays as undesirable outputs. Comput. Oper. Res. 2011, 38, 131–139. [Google Scholar] [CrossRef]
- Chang, D.S.; Yeh, L.T.; Liu, W. Incorporating the carbon footprint to measure industry context and energy consumption effect on environmental performance of business operations. Clean Technol. Environ. Policy 2015, 17, 359–371. [Google Scholar] [CrossRef]
- Yeh, L.T. Comparative study of various methods for treating zero undesirable outputs in data envelopment analysis. In Proceedings of the ISER 135th International Conference, Saint Petersburg, Russia, 9–10 July 2018. [Google Scholar]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for environmental effects and statistical noise in data envelopment analysis. J. Product. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, K.; Schmidt, P. Formulation and estimation of stochastic frontier function models. J. Econ. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Farrell, M.J. The measurement of productive efficiency. J. Royal Stat. Soc. Ser. A 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Charnes, A.; Clark, C.T.; Cooper, W.W.; Golany, B. A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the U.S. Air Forces. Ann. Oper. Res. 1985, 2, 95–112. [Google Scholar] [CrossRef]
- Yaisawarng, S.; Klein, J. The effects of sulfur dioxide controls on productivity change in the US electric power industry. Rev. Econ. Stat. 1994, 76, 447–460. [Google Scholar] [CrossRef]
- Eliopoulou, E.; Papanikolaou, A.; Voulgarellis, M. Statistical analysis of ship accidents and review of safety level. Saf. Sci. 2016, 85, 282–292. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Boussofiane, A.; Dyson, R.G.; Thanassoulis, E. Applied data envelopment analysis. Eur. J. Oper. Res. 1991, 52, 1–15. [Google Scholar] [CrossRef]
- Dyson, R.G.; Allen, R.; Camanho, A.S.; Podinovski, V.V.; Sarrico, C.S.; Shale, E.A. Pitfalls and protocols in DEA. Eur. J. Oper. Res. 2001, 132, 245–259. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stutz, J. Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J. Econ. 1985, 30, 91–107. [Google Scholar] [CrossRef]
- Bowlin, W.F. Measuring performance: An introduction to data envelopment analysis (DEA). J. Cost Anal. 1998, 7, 3–27. [Google Scholar] [CrossRef]
- Zaim, O.; Taskin, F. A Kuznets curve in environmental efficiency: An application on OECD countries. Environ. Resour. Econ. 2000, 17, 21–36. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Reig-Martínez, E.; Hernández-Sancho, F. Directional distance functions and environmental regulation. Resour. Energy Econ. 2005, 27, 131–142. [Google Scholar] [CrossRef]
- Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum: New York, NY, USA, 1981. [Google Scholar]
- Tang, J.; Zhang, G.; Wang, Y.; Wang, H.; Liu, F. A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation. Transp. Res. C 2015, 51, 29–40. [Google Scholar] [CrossRef]
- Hollnagel, E. The ETTO Principal: Efficiency-Thoroughness Trade-Off: Why Things that Go Right Sometimes Go Wrong; Ashgate: Farnham, UK, 2009. [Google Scholar]
- Schröder-Hinrichs, J.; Hollnagel, E.; Baldauf, M. From Titanic to Costa Concordia—A century of lessons not learned. WMU J. Marit. Affairs 2012, 11, 151–167. [Google Scholar] [CrossRef] [Green Version]
Sector | Author | DMUs | Inputs | Outputs | Methodology |
---|---|---|---|---|---|
Seaport | Wilmsmeier et al. [27] | 20 container terminals in Latin America, the Caribbean and Spain |
|
|
|
Seaport | Bergantino et al. [28] | 30 ports |
|
|
|
Schøyen et al. [29] | 26 European ports |
|
| ||
Schøyen and Odeck [30] | 24 Nordic and UK container ports |
|
| ||
Maritime transportation | Lun and Marlow [32] | 20 global container liners |
|
|
|
Panayides et al. [17] | 26 major international maritime firms |
|
|
| |
Bang et al. [33] | 14 global container liners | (For financial efficiency)
| (For financial efficiency)
|
| |
Gutiérrez et al. [34] | 18 major international container lines |
|
|
| |
Maritime transportation | Huang et al. [35] | 17 global container liners |
|
| |
Chang et al. [36] | Top 3 cruise lines | (Stage 1)
| (Stage 1)
|
| |
Chao [39] | 15 global container liners |
| (Intermediate output)
| ||
Chao et al. [42] | 13 global container liners |
| (Intermediate output)
|
| |
Gong et al. [43] | 26 global shipping firms |
| (For economic efficiency)
| ||
Coastal ferry transportation | Førsund [44] | Coastal ferries in Norway |
|
|
|
Park et al. [48] | 10 ferry service provinces in Korea |
|
| ||
Yu et al. [45] | 7 Off-shore ferry routes in Taiwan |
|
|
Variables | Measurement Criteria | |
---|---|---|
Input 1 | Number of ferries | |
Input 2 | Number of actual ferry services | The number of scheduled ferry services during the observation period – The number of cancelled ferry services during the observation period |
Input 3 | Total passenger capabilities | Sum of the allowable number of passengers on board the ferries |
Desirable Output (DO) | Number of passengers | Number of passengers onboard the vessels during the observation period |
Undesirable Output (UDO) | Marine accident records | Number of marine accident damages occurring during the observation period |
Classification | Damage Type | Description |
---|---|---|
Ship damage | Total loss | The vessel has sunk, gone missing, or is otherwise unsalvageable, i.e., it no longer functions as a ship, or the costs of repair are beyond economic feasibility owing to reasons such as running aground or onboard fire. |
Significant damage | The vessel is unable to operate under its own power, or it requires significant repairs to regain operability. | |
Minor damage | Damage not categorized as total loss or significant damage | |
No damage | No damage to the vessel despite accident occurrence | |
Casualties | 1st class casualties | 2 or more fatalities or missing persons |
2nd class casualties | 1 or 0 fatalities or missing persons, or 2 or more severely injured persons | |
3rd class casualties | Injuries not categorized as 1st class or 2nd class casualties | |
No casualties | No injuries from the accident |
Damage Type | Total Loss | Significant Damage | Minor Damage | No Damage | 1st class casualties | 2nd Class Casualties | 3rd Class Casualties | No Casualties |
---|---|---|---|---|---|---|---|---|
Weight | 0.238 | 0.092 | 0.030 | 0.019 | 0.410 | 0.145 | 0.048 | 0.019 |
Casualties | Ship Damage | |||
---|---|---|---|---|
17.3 | 13.4 | 11.8 | 11.5 | |
10.3 | 6.4 | 4.7 | 4.4 | |
7.6 | 3.8 | 2.1 | 1.8 | |
6.9 | 3.0 | 1.3 | 1.0 |
Classification | Input 1 | Input 2 | Input 3 | Desirable Output | Undesirable Output |
---|---|---|---|---|---|
Number of Ferries | Number of Actual Ferry Services | Total Passenger Capabilities | Number of Passengers | Marine Accident Records | |
N | 44 | 44 | 44 | 44 | 44 |
Mean. | 3.0 | 27,991.5 | 835.2 | 1,465,384 | 4.6 |
Median | 2.6 | 17,263.0 | 491.1 | 1,188,432 | 3.4 |
Standard deviation | 2.3 | 32,696.4 | 745.5 | 1,015,692 | 4.4 |
Minimum | 1.0 | 834.0 | 195.0 | 166,061.0 | 0 |
Maximum | 14.3 | 173,636.0 | 3287.1 | 3,881,355.0 | 17.8 |
Classification | Input 1 | Input 2 | Input 3 | |
---|---|---|---|---|
Number of Ferries | Number of Actual Ferry Services | Total Passenger Capabilities | ||
Desirable Output | Number of passengers | 0.508 ** | 0.450 ** | 0.638 ** |
Undesirable Output | Marine accident records | 0.732 ** | 0.205 ** | 0.614 ** |
DMU | Normal SBM | Safety-Constrained SBM | Change of Rank (R–R*) | Efficiency Score Ratio | ||
---|---|---|---|---|---|---|
Rank (R) | Rank (R*) | |||||
1 | 0.458 | 25 | 0.588 | 31 | −6 | 0.78 |
2 | 0.281 | 39 | 0.281 | 44 | −5 | 1.00 |
3 | 0.44 | 28 | 1 | 1 | +27 | 0.44 |
4 | 0.432 | 30 | 0.516 | 35 | −5 | 0.84 |
5 | 0.214 | 43 | 0.318 | 42 | +1 | 0.67 |
6 | 0.761 | 13 | 0.771 | 20 | −7 | 0.99 |
7 | 0.533 | 24 | 0.731 | 22 | +2 | 0.73 |
8 | 0.352 | 33 | 0.549 | 32 | +1 | 0.64 |
9 | 0.452 | 26 | 1 | 1 | +25 | 0.45 |
10 | 0.716 | 15 | 0.736 | 21 | −6 | 0.97 |
11 | 0.286 | 38 | 0.31 | 43 | −5 | 0.92 |
12 | 0.191 | 44 | 1 | 1 | +43 | 0.19 |
13 | 0.452 | 27 | 0.546 | 33 | −6 | 0.83 |
14 | 1 | 1 | 1 | 1 | 0 | 1.00 |
15 | 0.312 | 36 | 0.512 | 36 | 0 | 0.61 |
16 | 0.239 | 41 | 0.465 | 37 | +4 | 0.51 |
17 | 0.396 | 32 | 0.437 | 39 | −7 | 0.91 |
18 | 1 | 1 | 1 | 1 | 0 | 1.00 |
19 | 0.541 | 23 | 0.661 | 28 | −5 | 0.82 |
20 | 0.921 | 9 | 1 | 1 | +8 | 0.92 |
21 | 0.824 | 12 | 0.839 | 19 | −7 | 0.98 |
22 | 0.228 | 42 | 0.394 | 41 | +1 | 0.58 |
23 | 0.321 | 35 | 0.54 | 34 | +1 | 0.59 |
24 | 0.258 | 40 | 0.396 | 40 | 0 | 0.65 |
25 | 0.628 | 20 | 1 | 1 | +19 | 0.63 |
26 | 0.434 | 29 | 0.628 | 30 | −1 | 0.69 |
27 | 0.618 | 21 | 0.686 | 26 | −5 | 0.90 |
28 | 0.573 | 22 | 0.715 | 24 | −2 | 0.80 |
29 | 0.676 | 17 | 1 | 1 | +16 | 0.68 |
30 | 1 | 1 | 1 | 1 | 0 | 1.00 |
31 | 0.641 | 19 | 0.717 | 23 | −4 | 0.89 |
32 | 0.678 | 16 | 0.713 | 25 | −9 | 0.95 |
33 | 0.941 | 8 | 1 | 1 | +7 | 0.94 |
34 | 1 | 1 | 1 | 1 | 0 | 1.00 |
35 | 1 | 1 | 1 | 1 | 0 | 1.00 |
36 | 0.856 | 11 | 0.88 | 18 | −7 | 0.97 |
37 | 1 | 1 | 1 | 1 | 0 | 1.00 |
38 | 0.754 | 14 | 1 | 1 | +13 | 0.75 |
39 | 0.668 | 18 | 1 | 1 | +17 | 0.67 |
40 | 1 | 1 | 1 | 1 | 0 | 1.00 |
41 | 0.349 | 34 | 0.681 | 27 | +7 | 0.51 |
42 | 0.884 | 10 | 1 | 1 | +9 | 0.88 |
43 | 0.397 | 31 | 0.639 | 29 | +2 | 0.62 |
44 | 0.293 | 37 | 0.445 | 38 | −1 | 0.66 |
DMU | SMPI | 1-SMPI | Transportation Sales (Million USD) | Opportunity Cost (Million USD) |
---|---|---|---|---|
1 | 0.78 | 0.22 | 13.10 | 2.90 |
2 | 1.00 | 0.00 | 3.76 | 0.00 |
3 | 0.44 | 0.56 | 3.54 | 1.98 |
4 | 0.84 | 0.16 | 1.81 | 0.29 |
5 | 0.67 | 0.33 | 0.91 | 0.30 |
6 | 0.99 | 0.01 | 57.81 | 0.75 |
7 | 0.73 | 0.27 | 70.93 | 19.21 |
8 | 0.64 | 0.36 | 4.95 | 1.78 |
9 | 0.45 | 0.55 | 8.60 | 4.71 |
10 | 0.97 | 0.03 | 38.77 | 1.05 |
11 | 0.92 | 0.08 | 2.66 | 0.21 |
12 | 0.19 | 0.81 | 1.91 | 1.55 |
13 | 0.83 | 0.17 | 14.90 | 2.57 |
14 | 1.00 | 0.00 | 11.97 | 0.00 |
15 | 0.61 | 0.39 | 3.09 | 1.21 |
16 | 0.51 | 0.49 | 0.83 | 0.40 |
17 | 0.91 | 0.09 | 2.84 | 0.27 |
18 | 1.00 | 0.00 | 3.59 | 0.00 |
19 | 0.82 | 0.18 | 18.26 | 3.31 |
20 | 0.92 | 0.08 | 16.23 | 1.28 |
21 | 0.98 | 0.02 | 59.60 | 1.07 |
22 | 0.58 | 0.42 | 8.76 | 3.69 |
23 | 0.59 | 0.41 | 5.27 | 2.14 |
24 | 0.65 | 0.35 | 7.93 | 2.76 |
25 | 0.63 | 0.37 | 47.30 | 17.60 |
26 | 0.69 | 0.31 | 2.94 | 0.91 |
27 | 0.90 | 0.10 | 3.90 | 0.39 |
28 | 0.80 | 0.20 | 10.25 | 2.04 |
29 | 0.68 | 0.32 | 3.86 | 1.25 |
30 | 1.00 | 0.00 | 8.43 | 0.00 |
31 | 0.89 | 0.11 | 2.64 | 0.28 |
32 | 0.95 | 0.05 | 11.00 | 0.54 |
33 | 0.94 | 0.06 | 8.10 | 0.48 |
34 | 1.00 | 0.00 | 42.82 | 0.00 |
35 | 1.00 | 0.00 | 70.32 | 0.00 |
36 | 0.97 | 0.03 | 9.57 | 0.26 |
37 | 1.00 | 0.00 | 15.27 | 0.00 |
38 | 0.75 | 0.25 | 2.77 | 0.68 |
39 | 0.67 | 0.33 | 7.81 | 2.59 |
40 | 1.00 | 0.00 | 2.86 | 0.00 |
41 | 0.51 | 0.49 | 10.32 | 5.03 |
42 | 0.88 | 0.12 | 16.45 | 1.91 |
43 | 0.62 | 0.38 | 3.92 | 1.49 |
44 | 0.66 | 0.34 | 11.85 | 4.05 |
Average | 14.9 | 2.11 |
Group | Number of DMUs | Cluster Value (Million USD) | Avg. Number of Ferries | Avg. Number of Actual Ferry Services | Avg. Total Passenger Capabilities |
---|---|---|---|---|---|
1 | 4 | 65.00 | 3.92 | 2,562.62 | 9,215.25 |
2 | 3 | 43.47 | 3.34 | 1,276.86 | 8,127.33 |
3 | 18 | 12.32 | 3.60 | 820.81 | 34,934.50 |
4 | 19 | 3.39 | 2.16 | 415.41 | 28,503.21 |
Group | (a) Average Transportation Sales (Million USD) | (b) Average Opportunity Cost (Million USD) | (b)/(a) |
---|---|---|---|
1 | 64.67 | 5.26 | 0.08 |
2 | 42.96 | 6.22 | 0.14 |
3 | 11.60 | 2.12 | 0.18 |
4 | 3.06 | 0.80 | 0.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, G.; Kim, H. Analysis of Operational Efficiency Considering Safety Factors as an Undesirable Output for Coastal Ferry Operators in Korea. J. Mar. Sci. Eng. 2020, 8, 367. https://doi.org/10.3390/jmse8050367
Kim J, Lee G, Kim H. Analysis of Operational Efficiency Considering Safety Factors as an Undesirable Output for Coastal Ferry Operators in Korea. Journal of Marine Science and Engineering. 2020; 8(5):367. https://doi.org/10.3390/jmse8050367
Chicago/Turabian StyleKim, Joohwan, Gunwoo Lee, and Hwayoung Kim. 2020. "Analysis of Operational Efficiency Considering Safety Factors as an Undesirable Output for Coastal Ferry Operators in Korea" Journal of Marine Science and Engineering 8, no. 5: 367. https://doi.org/10.3390/jmse8050367
APA StyleKim, J., Lee, G., & Kim, H. (2020). Analysis of Operational Efficiency Considering Safety Factors as an Undesirable Output for Coastal Ferry Operators in Korea. Journal of Marine Science and Engineering, 8(5), 367. https://doi.org/10.3390/jmse8050367