Numerical Simulation of Cross-Flow Vortex-Induced Vibration of Hexagonal Cylinders with Face and Corner Orientations at Low Reynolds Number
Abstract
:1. Introduction
2. Numerical Method: Governing Equations and the Computational Model
3. Numerical Results
3.1. Validation of the Numerical Model
3.2. Mesh Sensitivity Analysis
4. One-Degree-of-Freedom Responses of the Hexagonal Cylinders
5. Vortex Shedding Regime
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hayashida, H.; Iwasa, Y. Aerodynamic shape effects of tall building for vortex induced vibration. J. Wind Eng. Ind. Aerodyn. 1990, 33, 237–242. [Google Scholar] [CrossRef]
- Wang, L.; Liang, S.-G.; Huang, G.; Song, J.; Zou, L. Investigation on the unstability of vortex induced resonance of high-rise buildings. J. Wind Eng. Ind. Aerodyn. 2018, 175, 17–31. [Google Scholar] [CrossRef]
- Matsumoto, M.; Yagi, T.; Shigemura, Y.; Tsushima, D. Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity. J. Wind Eng. Ind. Aerodyn. 2001, 89, 633–647. [Google Scholar] [CrossRef]
- Fujino, Y.; Yoshida, Y. Wind-Induced Vibration and Control of Trans-Tokyo Bay Crossing Bridge. J. Struct. Eng. 2002, 128, 1012–1025. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Hua, X.; Song, G.; Chen, Z. Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper. Eng. Struct. 2018, 173, 61–75. [Google Scholar] [CrossRef]
- Carlson, D.W.; Modarres-Sadeghi, Y. Vortex-induced vibration of spar platforms for floating offshore wind turbines. Wind Energy 2018, 21, 1169–1176. [Google Scholar] [CrossRef]
- Datta, N. Vortex-induced vibration of a tension leg platform tendon: Multi-mode limit cycle oscillations. J. Mar. Sci. Appl. 2017, 16, 458–464. [Google Scholar] [CrossRef]
- Trim, A.; Braaten, H.; Lie, H.; Tognarelli, M. Experimental investigation of vortex-induced vibration of long marine risers. J. Fluids Struct. 2005, 21, 335–361. [Google Scholar] [CrossRef]
- Chaplin, J.; Bearman, P.; Cheng, Y.; Fontaine, E.; Graham, J.; Herfjord, K.; Huera-Huarte, F.; Isherwood, M.; Lambrakos, K.; Larsen, C.; et al. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. J. Fluids Struct. 2005, 21, 25–40. [Google Scholar] [CrossRef]
- Song, L.; Fu, S.; Cao, J.; Ma, L.; Wu, J. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. J. Fluids Struct. 2016, 63, 325–350. [Google Scholar] [CrossRef]
- Kang, L.; Ge, F.; Wu, X.; Hong, Y. Experiments and Modeling on the Maximum Displacement of a Long Tensioned Mooring Tether Subjected to Vortex-induced Vibration. Procedia Eng. 2016, 166, 83–90. [Google Scholar] [CrossRef]
- Van Dijk, R.R.T.; Voogt, A.; Fourchy, P.; Mirza, S. The Effect of Mooring System and Sheared Currents on Vortex Induced Motions of Truss Spars. In Proceedings of the ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 8–13 June 2003; pp. 285–292. [Google Scholar]
- Skop, R.A.; Griffin, O.M.; Ramberg, S.E. Strumming Predictions for the Seacon Ii Experimental Mooring. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 1977. [Google Scholar]
- Larsen, C.M.; Passano, E.; Baarholm, G.S.; Koushan, K. Non-Linear Time Domain Analysis of Vortex Induced Vibrations for Free Spanning Pipelines. In Proceedings of the ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, BC, Canada, 20–25 June 2004; pp. 207–215. [Google Scholar]
- Kapuria, S.; Salpekar, V.Y.; Sengupta, S. Fatigue due to vortex-induced crossflow oscillations in free spanning pipelines supported on elastic soil bed. In Proceedings of the Ninth International Offshore and Polar Engineering Conference, Brest, France, 30 May–4 June 1999; International Society of Offshore and Polar Engineers: Mountain View, CA, USA. [Google Scholar]
- Jin, Y.; Dong, P. A novel Wake Oscillator Model for simulation of cross-flow vortex induced vibrations of a circular cylinder close to a plane boundary. Ocean Eng. 2016, 117, 57–62. [Google Scholar] [CrossRef]
- Weaver, D.; Fitzpatrick, J. A review of cross-flow induced vibrations in heat exchanger tube arrays. J. Fluids Struct. 1988, 2, 73–93. [Google Scholar] [CrossRef]
- Chen, S. Crossflow-induced vibrations of heat exchanger tube banks. Nucl. Eng. Des. 1978, 47, 67–86. [Google Scholar] [CrossRef]
- Izadpanah, E.; Amini, Y.; Ashouri, A. A comprehensive investigation of vortex induced vibration effects on the heat transfer from a circular cylinder. Int. J. Therm. Sci. 2018, 125, 405–418. [Google Scholar] [CrossRef]
- Paidoussis, M. A review of flow-induced vibrations in reactors and reactor components. Nucl. Eng. Des. 1983, 74, 31–60. [Google Scholar] [CrossRef]
- Weaver, D.S.; Ziada, S.; Au-Yang, M.K.; Chen, S.S.; Paıdoussis, M.P.; Pettigrew, M.J. Flow-Induced Vibrations in Power and Process Plant Components—Progress and Prospects. J. Press. Vessel Technol. 2000, 122, 339–348. [Google Scholar] [CrossRef]
- Wille, R. Karman vortex streets. In Advances in Applied Mechanics; Elsevier: New York, NY, USA, 1960; Volume 6, pp. 273–287. [Google Scholar]
- Vandiver, J.K.; Swithenbank, S.B.; Jaiswal, V.; Jhingran, V. Fatigue Damage from High Mode Number Vortex-Induced Vibration. In Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 4–9 June 2006; pp. 803–811. [Google Scholar]
- Blevins, R.D. Flow-Induced Vibration; Van Nostrand Reinhold Co.: New York, NY, USA, 1977; 377p. [Google Scholar]
- Feng, C.C. The Measurement of Vortex Induced Effects in Flow past Stationary and Oscillating Circular and D-Section Cylinders. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1968. [Google Scholar]
- Khalak, A.; Williamson, C. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. J. Fluids Struct. 1997, 11, 973–982. [Google Scholar] [CrossRef]
- Khalak, A.; Williamson, C.H. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder. J. Wind Eng. Ind. Aerodyn. 1997, 69, 341–350. [Google Scholar] [CrossRef]
- Khalak, A.; Williamson, C. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 1999, 13, 813–851. [Google Scholar] [CrossRef]
- Jauvtis, N.; Williamson, C.H.K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 2004, 509, 23–62. [Google Scholar] [CrossRef]
- Jeon, D.; Gharib, M. On circular cylinders undergoing two-degree-of-freedom forced motions. J. Fluids Struct. 2001, 15, 533–541. [Google Scholar] [CrossRef]
- Pan, Z.; Cui, W.; Miao, Q. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code. J. Fluids Struct. 2007, 23, 23–37. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; An, H.; Lu, L. Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current. J. Fluids Struct. 2014, 50, 292–311. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L. Numerical simulation of two-degree-of-freedom vortex-induced vibration of a circular cylinder close to a plane boundary. J. Fluids Struct. 2011, 27, 1097–1110. [Google Scholar] [CrossRef]
- Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 2009, 23, 305–316. [Google Scholar] [CrossRef]
- Ji, C.; Xiao, Z.; Wang, Y.; Wang, H. Numerical investigation on vortex-induced vibration of an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method. Int. J. Comput. Fluid Dyn. 2011, 25, 207–221. [Google Scholar] [CrossRef]
- Prasanth, T.; Behara, S.; Singh, S.; Kumar, R.; Mittal, S. Effect of blockage on vortex-induced vibrations at low Reynolds numbers. J. Fluids Struct. 2006, 22, 865–876. [Google Scholar] [CrossRef]
- Bearman, P.; Gartshore, I.; Maull, D.; Parkinson, G. Experiments on flow-induced vibration of a square-section cylinder. J. Fluids Struct. 1987, 1, 19–34. [Google Scholar] [CrossRef]
- Amandolèse, X.; Hémon, P. Vortex-induced vibration of a square cylinder in wind tunnel. C. R. Méc. 2010, 338, 12–17. [Google Scholar] [CrossRef]
- Zhao, J.; Nemes, A.; Jacono, D.L.; Sheridan, J. The effect of incidence angle variation of a square cylinder on its dynamic response and wake states. In Proceedings of the 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand, 5–9 December 2010; pp. 724–727. [Google Scholar]
- Corless, R.M.; Parkinson, G. A model of the combined effects of vortex-induced oscillation and galloping. J. Fluids Struct. 1988, 2, 203–220. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; Zhou, T. Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number. Phys. Fluids 2013, 25, 023603. [Google Scholar] [CrossRef]
- Kawatani, M.; Toda, N.; Sato, M.; Kobayashi, H. Vortex-induced torsional oscillations of bridge girders with basic sections in turbulent flows. J. Wind Eng. Ind. Aerodyn. 1999, 83, 327–336. [Google Scholar] [CrossRef]
- De Ridder, J.; Van Tichelen, K.; Degroote, J.; Vierendeels, J. Vortex-induced vibrations by axial flow in a bundle of cylinders. In Proceedings of the 11th International Conference on Flow-Induced Vibration, Hague, The Netherlands, 4–6 July 2016; pp. 1–8. [Google Scholar]
- Karampour, H.; Wu, Z.; Lefebure, J.; Jeng, D.-S.; Etemad-Shahidi, A.; Simpson, B. Modelling of flow around hexagonal and textured cylinders. Proc. Inst. Civ. Eng. Eng. Comput. Mech. 2018, 171, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.W.; Wu, Z. A study of two-dimensional flow past regular polygons via conformal mapping. J. Fluid Mech. 2009, 628, 121. [Google Scholar] [CrossRef]
- Khaledi, H.A.; Andersson, H.I. On vortex shedding from a hexagonal cylinder. Phys. Lett. A 2011, 375, 4007–4021. [Google Scholar] [CrossRef] [Green Version]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Karim, M.; Alim, A. Numerical investigation of unsteady flow past a circular cylinder using 2-D finite volume method. J. Nav. Arch. Mar. Eng. 2007, 4, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Ansys® Academic Research Fluent, Release 19.1. Available online: https://www.ansys.com/products/release-highlights (accessed on 28 April 2020).
- Masud, A. Effects of Mesh Motion on the Stability and Convergence of ALE Based Formulations for Moving Boundary Flows. Comput. Mech. 2006, 38, 430–439. [Google Scholar] [CrossRef]
- Pan, Y.; Banerjee, S. Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 1996, 8, 2733–2755. [Google Scholar] [CrossRef]
- Nishino, T.; Roberts, G.; Zhang, X. Unsteady RANS and detached-eddy simulations of flow around a circular cylinder in ground effect. J. Fluids Struct. 2008, 24, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Guilmineau, E.; Queutey, P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow. J. Fluids Struct. 2004, 19, 449–466. [Google Scholar] [CrossRef]
- Nikoo, H.M.; Bi, K.; Hao, H. Three-dimensional vortex-induced vibration of a circular cylinder at subcritical Reynolds numbers with low-Re correction. Mar. Struct. 2019, 66, 288–306. [Google Scholar] [CrossRef]
- Linnick, M.N.; Fasel, H. A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. Comput. Phys. 2005, 204, 157–192. [Google Scholar] [CrossRef]
- Berthelsen, P.A.; Faltinsen, O.M. A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries. J. Comput. Phys. 2008, 227, 4354–4397. [Google Scholar] [CrossRef]
- Williamson, C.; Roshko, A. Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 1988, 2, 355–381. [Google Scholar] [CrossRef]
- Manhart, M. A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 2004, 33, 435–461. [Google Scholar] [CrossRef]
- Roshko, A. Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 1961, 10, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Ku, H.-C. Solution of Flow in Complex Geometries by the Pseudospectral Element Method. J. Comput. Phys. 1995, 117, 215–227. [Google Scholar] [CrossRef]
- Zukauskas, A.; Ziugzda, J. Heat Transfer of a Cylinder in Crossflow; Hemisphere Publishing: New York, NY, USA, 1985. [Google Scholar]
- Sourav, K.; Kumar, D.; Sen, S. Vortex-induced vibrations of an elliptic cylinder of low mass ratio: Identification of new response branches. Phys. Fluids 2020, 32, 023605. [Google Scholar] [CrossRef]
- Nikoo, H.M.; Bi, K.; Hao, H. Textured pipe-in-pipe system: A compound passive technique for vortex-induced vibration control. Appl. Ocean Res. 2020, 95, 102044. [Google Scholar] [CrossRef]
Case | Number of Divisions | Total Number of Elements | Re = 100 Circular Cylinder | Re = 1000 Circular Cylinder | Re = 1000 Corner-Oriented Hexagonal Cylinder | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L0 | L4 | L5 | L6 | RMS CL | Mean CD | St | St | Mean CD | St | Mean CD | ||
Linnick and Fasel [55] | - | - | - | - | - | 0.333 | 1.340 | 0.166 | - | - | - | - |
Berthelsen and Faltinsen [56] | - | - | - | - | - | 0.340 | 1.380 | 1.169 | - | - | - | - |
Williamson and Roshko [57] | - | - | - | - | - | - | - | 0.164 | - | - | - | - |
Khaledi and Andersson (DNS) [46] | - | - | - | - | - | - | - | - | - | - | 0.1718 | - |
Roshko (Exp) [59] | - | - | - | - | - | - | - | - | 0.21 | 1.2 | - | - |
Ku [60] | - | - | - | - | - | - | - | - | 0.233 | 1.17 | - | - |
Zukauskas and Ziugzda [61] | - | - | - | - | - | - | - | - | 1.20 | - | - | |
This study (mesh 1) | 20 | 25 | 30 | 35 | 13,382 | 0.347 | 1.381 | 0.161 | - | - | 0.1732 | 2.145 |
This study (mesh 2) | 25 | 30 | 35 | 40 | 18,140 | 0.339 | 1.363 | 0.163 | - | - | 0.1729 | 1.716 |
This study (mesh 3) | 30 | 40 | 45 | 50 | 30,520 | 0.333 | 1.352 | 0.163 | 0.220 | 1.200 | 0.1724 | 1.492 |
This study (mesh 4) | 35 | 45 | 55 | 55 | 35,950 | 0.330 | 1.348 | 0.163 | - | - | 0.1723 | 1.427 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piran, F.; Karampour, H.; Woodfield, P. Numerical Simulation of Cross-Flow Vortex-Induced Vibration of Hexagonal Cylinders with Face and Corner Orientations at Low Reynolds Number. J. Mar. Sci. Eng. 2020, 8, 387. https://doi.org/10.3390/jmse8060387
Piran F, Karampour H, Woodfield P. Numerical Simulation of Cross-Flow Vortex-Induced Vibration of Hexagonal Cylinders with Face and Corner Orientations at Low Reynolds Number. Journal of Marine Science and Engineering. 2020; 8(6):387. https://doi.org/10.3390/jmse8060387
Chicago/Turabian StylePiran, Farid, Hassan Karampour, and Peter Woodfield. 2020. "Numerical Simulation of Cross-Flow Vortex-Induced Vibration of Hexagonal Cylinders with Face and Corner Orientations at Low Reynolds Number" Journal of Marine Science and Engineering 8, no. 6: 387. https://doi.org/10.3390/jmse8060387
APA StylePiran, F., Karampour, H., & Woodfield, P. (2020). Numerical Simulation of Cross-Flow Vortex-Induced Vibration of Hexagonal Cylinders with Face and Corner Orientations at Low Reynolds Number. Journal of Marine Science and Engineering, 8(6), 387. https://doi.org/10.3390/jmse8060387