Immunotoxicity in Ascidians: Antifouling Compounds Alternative to Organotins—V. the Case of Dichlofluanid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Biocide
2.3. Haemocyte Cultures
2.4. Trypan Blue Exclusion Test for LC50 Evaluation
2.5. Cell Functional Assays
2.5.1. Cell Adhesion Assay
2.5.2. Cell Spreading Index
2.5.3. Phagocytosis Index
2.5.4. Apoptotic Index
2.6. Cytochemical and Cytoenzymatic Assays
2.6.1. Glutathione Content
2.6.2. Phenoloxidase
2.6.3. Acid Phosphatase
2.7. Statistical Analysis
3. Results
3.1. Effects on Cell Viability and Morphology
3.2. Effects on Phagocytosis
3.3. Effects on the GSH Content
3.4. Apoptosis Induction
3.5. Effects on Enzymatic Activities Involved in Immune responses
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Callow, M.R.; Wood, K.R.; Evans, L.V. The biology of slime films, Part 3. Ships World Shipbuild. 1978, 3937, 133–139. [Google Scholar]
- Cooksey, K.E.; Cooksey, B. Adhesion of fouling diatoms to surfaces: Some biochemistry. In Algal Biofouling Studies in Environmental Studies; Evans, L.V., Hoagland, K.D., Eds.; Elsevier: New York, NY, USA, 1986; Volume 28, pp. 41–53. [Google Scholar]
- Rosowsky, J.R.; Hoagland, K.D.; Aloi, J.E. Structural morphology of diatom dominated stream biofilm communities under the impact of soil erosion. In Algal Biofouling—Studies in Environmental Studies; Evans, L.V., Hoagland, K.D., Eds.; Elsevier: New York, NY, USA, 1986; Volume 28, pp. 247–299. [Google Scholar]
- Costerton, J.W.; Stewart, P.S.; Grennberg, E.P. Battling biofilms. Sci. Am. 2001, 285, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Champ, M. Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Mar. Pollut. Bull. 2003, 46, 935–940. [Google Scholar] [CrossRef]
- Schultz, M.; Bendick, J.A.; Holm, E.R.; Hertel, W.M. Economic impact of biofouling on a naval surface ship. Biofouling 2011, 27, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Hakim, M.L.; Utama, I.K.A.P.; Nugroho, B.; Yusim, A.K.; Baitha, M.S.; Suastika, I.K. Review of correlation between marine fouling and fuel consumption on a ship. In Proceedings of the 17th Conference on Marine Technology for Sustainable Development (SENTA 2017), Surabaya, Indonesia, 6–7 December 2017; pp. 122–129. [Google Scholar]
- Voulvoulis, N.; Scrimshaw, M.D.; Lester, J.N. Review alternative antifouling biocides. Appl. Organomet. Chem. 1999, 13, 135–143. [Google Scholar] [CrossRef]
- Thomas, K.V.; Blake, S.J.; Waldock, M.J. Antifouling paint booster biocide contamination in UK marine sediments. Mar. Pollut. Bull. 2000, 40, 739–745. [Google Scholar] [CrossRef]
- Martínez, K.; Ferrer, I.; Hernando, M.D.; Fernández-Alba, A.R.; Marcé, R.M.; Borrull, F.; Barceló, D. Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. Environ. Technol. 2001, 22, 543–552. [Google Scholar] [CrossRef]
- Di Landa, G.; Ansanelli, G.; Ciccoli, R.; Cremisini, C. Occurrence of antifouling paint booster biocides in selected harbors and marinas inside the Gulf of Napoli: A preliminary survey. Mar. Pollut. Bull. 2006, 52, 1541–1546. [Google Scholar] [CrossRef]
- Mukherjee, A.; Mohan Rao, K.V.; Ramesh, U.S. Predicted concentrations of biocides from antifouling paints in Visakhapatnam Harbour. J. Environ. Manag. 2009, 90, S51–S59. [Google Scholar] [CrossRef]
- Fletcher, C.A.; Bubb, J.M.; Lester, J.N. Magnitude and distribution of antropogenic contaminants in salt-marsh sediments of the Essex coast UK: 2. Selected metals and metalloids. Sci. Total Environ. 1994, 155, 47–59. [Google Scholar] [CrossRef]
- Randall, L.; Weber, J.H. Adsorptive behavior of butyltin compounds under simulated estuarine conditions. Sci. Total Environ. 1986, 57, 191–203. [Google Scholar] [CrossRef]
- Knezovich, J.P.; Harrison, F.L.; Wilhelm, R.G. The bioavailability of sediment-sorbed organic-chemicals: A review. Water Air Soil Pollut. 1987, 32, 233–245. [Google Scholar] [CrossRef]
- Thomas, K.V.; Fileman, T.W.; Readman, J.W.; Waldock, M.J. Antifouling paint booster biocides in the UK coastal environment and potential risk of biological effects. Mar. Pollut. Bull. 2001, 42, 677–688. [Google Scholar] [CrossRef]
- LimnoMar. Antifouling Product List (Antifouling-Produktliste [German]); LimnoMar: Hamburg, Germany, 2013. [Google Scholar]
- Voulvoulis, N.; Scrimshaw, M.D.; Lester, J.N. Partitioning of selected antifouling biocides in the aquatic environment. Mar. Environ. Res. 2002, 53, 1–16. [Google Scholar] [CrossRef]
- Forstner, U.; Wittmann, G.T.W. Metal Pollution in the Aquatic Environment; Springer: New York, NY, USA, 1981. [Google Scholar]
- Voulvoulis, N.; Scrimshaw, M.D.; Lester, J.N. Comparative environmental assessment of biocides used in antifouling paints. Chemosphere 2002, 47, 789–795. [Google Scholar] [CrossRef]
- UK Department for Environment, Food and Rural Affairs—Pesticides Safety Directorate. Evaluation on Booster Biocides in Antifouling Products: Full review of dichlofluanid. Issue n. 206, January 2003. Available online: http://www.fluoridealert.org/wp-content/pesticides/dichlofluanid.evaluation.03.pdf (accessed on 6 May 2020).
- Thomas, K.V.; McHugh, M.; Waldock, M. Antifouling paint booster biocides in UK coastal waters: Inputs, occurrence and environmental fate. Sci. Total Environ. 2002, 293, 117–127. [Google Scholar] [CrossRef]
- Thomas, K.V.; McHugh, M.; Hilton, M.; Waldock, M. Increased persistence of antifouling paint biocides when associated with paint particles. Environ. Pollut. 2003, 123, 153–161. [Google Scholar] [CrossRef]
- Voulvoulis, N. Antifouling paint booster biocides: Occurrence and partitioning in water and sediments. In The Handbook of Environmental Chemistry: Antifouling Paint Biocides; Konstantinou, I.K., Ed.; Springer: Heidelburg, Germany, 2006; pp. 155–170. [Google Scholar]
- Thomas, K.V.; Brooks, S. The environmental fate and effects of antifouling paint biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef]
- Hamwijk, C.; Schouten, A.; Foekema, E.M.; Ravensberg, J.C.; Collombon, M.T.; Schmidt, K.; Kugler, M. Monitoring of the booster biocide dichlofluanid in water and marine sediment of Greek marinas. Chemosphere 2005, 60, 1316–1324. [Google Scholar] [CrossRef]
- Daehne, D.; Fürle, C.; Thomsen, A.; Watermann, B.; Feibicke, M. Antifouling biocides in German marinas: Exposure assessment and calculation of national consumption and emission. Integr. Environ. Assess. Manag. 2017, 13, 892–905. [Google Scholar] [CrossRef]
- Readman, J.W. Development, occurrence and regulation of antifouling paint biocides: Historical review and future trends. In The Handbook of Environmental Chemistry: Antifouling Paint Biocides; Konstantinou, I.K., Ed.; Springer: Heidelburg, Germany, 2006; pp. 1–15. [Google Scholar]
- Sakkas, V.A.; Konstantinou, I.K.; Lambropoulou, D.A.; Albanis, T.A. Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece. Environ. Sci. Pollut. Res. 2002, 9, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Martínez, K.; Ferrer, I.; Barceló, D. Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. 2000, 879A, 27–37. [Google Scholar] [CrossRef]
- Voulvoulis, N.; Scrimshaw, M.D.; Lester, J.N. Occurrence of four biocides utilised in antifouling paints, as alternative to organotin compounds, in water and sediment of a commercial estuary in the UK. Mar. Pollut. Bull. 2000, 40, 938–946. [Google Scholar] [CrossRef]
- Albanis, T.A.; Lambropoulou, D.A.; Sakkas, V.A.; Konstantinou, I.K. Antifouling paint booster biocide contamination in Greek marine sediments. Chemosphere 2002, 48, 475–485. [Google Scholar] [CrossRef]
- Harino, H.; Yamamoto, Y.; Eguchi, S.; Kawai, S.; Kurokawa, Y.; Arai, T.; Ohji, M.; Okamura, H.; Miyazaki, N. Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan. Arch. Environ. Contam. Toxicol. 2007, 52, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Cima, F.; Ballarin, L. A proposed integrated bioindex for the macrofouling biocoenosis of hard substrata in the lagoon of Venice. Estuar. Coast. Shelf Sci. 2013, 130, 190–201. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L.; Bressa, G.; Sabbadin, A. Immunotoxicity of butyltins in tunicates. Appl. Organomet. Chem. 1995, 9, 567–572. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L.; Bressa, G.; Sabbadin, A.; Burighel, P. Triphenyltin pesticides in sea water as immunotoxins for tunicates. Mar. Chem. 1997, 58, 267–273. [Google Scholar] [CrossRef]
- Cima, F.; Bragadin, M.; Ballarin, L. Toxic effects of new antifouling compounds on tunicate haemocytes I. Sea-Nine 211TM and chlorothalonil. Aquat. Toxicol. 2008, 86, 299–312. [Google Scholar] [CrossRef]
- Menin, A.; Ballarin, L.; Bragadin, M.; Cima, F. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins—II the case of diuron and TCMS pyridine. J. Environ. Sci. Health 2008, 43B, 644–654. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins III—The case of copper(I) and Irgarol 1051. Chemosphere 2012, 89, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Cima, F.; Ballarin, L. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins—IV. The case of zinc pyrithione. Comp. Biochem. Physiol. 2015, 169C, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Ballarin, L.; Cima, F. Cytochemical properties of Botryllus schlosseri haemocytes: Indications for morpho-functional characterisation. Eur. J. Histochem. 2005, 49, 255–264. [Google Scholar] [PubMed]
- Cima, F. Microscopy methods for morpho-functional characterisation of marine invertebrate haemocytes. In Microscopy: Science, Technology, Applications and Education, Microscopy; Book Series, n. 4; Mendez-Vilas, A., Alvarez, J.D., Eds.; Formatex Research Center: Badajoz, Spain, 2010; Volume 2, pp. 1100–1107. [Google Scholar]
- Cima, F. Enzyme histochemistry for functional histology in invertebrates. In Single Molecule Histochemistry: Methods and Protocols; Methods in Molecular Biology, Springer Protocols; Pellicciari, C., Biggiogera, M., Eds.; Humana Press-Springer Science: New York, NY, USA, 2017; Volume 1560, pp. 69–90. [Google Scholar]
- Cookson, M.R.; Slamon, N.D.; Pentreath, V.W. Glutathione modifies the toxicity of triethyltin and trimethyltin in C6 glioma cells. Arch. Toxicol. 1998, 72, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Onofri, A. Routine statistical analyses of field experiments by using an Excel extension. In Proceedings of the 6th National Conference of Italian Biometric Society, Pisa, Italy, 20–22 June 2007; pp. 93–96. [Google Scholar]
- Smith, V.J.; Johnston, P.A. Differential haemotoxic effect of PCB congeners in the common shrimp, Crangon crangon. Comp. Biochem. Physiol. 1992, 101C, 641–649. [Google Scholar] [CrossRef]
- Seibert, H.; Gulden, M.; Voss, J.U. An in vitro toxicity testing strategy for the classification and labelling of chemicals according to their potential acute lethal potency. Toxicology 1994, 8, 847–850. [Google Scholar] [CrossRef]
- Auffret, M.; Oubella, R. Hemocyte aggregation in the oyster Crassostrea gigas: In vitro measurement and experimental modulation by xenobiotics. Comp. Biochem. Physiol. 1997, 118A, 705–712. [Google Scholar] [CrossRef]
- Nusetti, O.; Salazar-Lugo, R.; Rodríguez-Grau, J.; Vilas, J. Immune and biochemical responses of the polychaete Eurythoe complanata exposed to sublethal concentration of copper. Comp. Biochem. Physiol. 1998, 119C, 177–183. [Google Scholar] [CrossRef]
- Pipe, R.K.; Coles, J.A.; Carissan, F.M.M.; Ramanathan, K. Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquat. Toxicol. 1999, 46, 43–54. [Google Scholar] [CrossRef]
- Coteur, G.; Danis, B.; Fowler, S.W.; Teyssié, J.L.; Dubois, P.; Warnau, M. Effects of PCBs on reactive oxygen species (ROS) production by the immune cells of Paracentrotus lividus (Echinodermata). Mar. Pollut. Bull. 2001, 42, 667–672. [Google Scholar] [CrossRef]
- Matozzo, V.; Ballarin, L.; Cima, F. Effects of TBT on functional responses of coelomocytes in the marine worm Sipunculus nudus. Fresenius Environ. Bull. 2002, 11, 568–572. [Google Scholar]
- Matozzo, V.; Ballarin, L.; Marin, M.G. In vitro effects of tributyltin on functional responses of haemocytes in the clam Tapes philippinarum. Appl. Organomet. Chem. 2002, 16, 169–174. [Google Scholar] [CrossRef]
- Matozzo, V.; Marin, M.G. 4-Nonylphenol induces immunomodulation and apoptotic events in the clam Tapes philippinarum. Mar. Ecol. Prog. Ser. 2005, 285, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Pagano, M.; Porcino, C.; Briglia, M.; Fiorino, E.; Vazzana, M.; Silvestro, S.; Faggio, C. The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis. Int. J. Environ. Res. 2017, 11, 207–216. [Google Scholar] [CrossRef]
- Anderson, R.S. Effects of anthropogenic agents on bivalve cellular and humoral defense mechanism. Am. Fish Soc. 1988, 18, 238–242. [Google Scholar]
- Alvarez, M.R.; Friedl, F.E. Effects of a fungicide on in vitro hemocyte viability, phagocytosis and attachment in the American oyster, Crassostrea virginica. Aquaculture 1992, 107, 135–140. [Google Scholar] [CrossRef]
- Nishiuchi, Y.; Yoshida, K. Toxicities of pesticides to some freshwater snails. Bull. Agric. Chem. Insp. Stn. 1972, 12, 86–92. [Google Scholar]
- Escher, B.I.; Hermens, J.L.M. Modes of action in ecotoxicology: Their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ. Sci. Technol. 2002, 36, 4201–4217. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L.; Bressa, G.; Burighel, P. Cytoskeleton alteration by tributyltin (TBT) in tunicate phagocytes. Ecotoxicol. Environ. Saf. 1998, 40, 160–165. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L. Tributyltin induces cytoskeletal alterations in the colonial ascidian Botryllus schlosseri phagocytes via interaction with calmodulin. Aquat. Toxicol. 2000, 48, 419–429. [Google Scholar] [CrossRef]
- Martello, L.B.; Friedman, C.S.; Tjeerdema, R.S. Combined effects of pentachlorophenol and salinity stress on phagocytic and chemotactic function in two species of abalone. Aquat. Toxicol. 2000, 49, 213–225. [Google Scholar] [CrossRef]
- Affolter, M.; Weijer, C.J. Signaling to cytoskeletal dynamics during chemotaxis. Dev. Cell 2005, 9, 19–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, H.; Guillén, N. New insights into the role of the cytoskeleton in phagocytosis of Entamoeba histolytica. Cell. Microbiol. 1999, 1, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Castellano, F.; Chavrier, P.; Caron, E. Actin dynamics during phagocytosis. Semin. Immunol. 2001, 13, 347–355. [Google Scholar] [CrossRef]
- May, R.C.; Machesky, L.M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 2001, 114, 1061–1077. [Google Scholar]
- Ladhar-Chaabouni, R.; Hamza-Chaffai, A. The cell cultures and the use of haemocytes from marine molluscs for ecotoxicology assessment. Cytotechnology 2016, 68, 1669–1685. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.; Grikscheit, K.; Siede, R.; Grosse, R.; Meixner, M.D.; Büchler, R. Immunosuppression in honeybee queens by the neonicotinoids Thiacloprid and Clothianidin. Sci. Rep. 2017, 7, 4673. [Google Scholar] [CrossRef] [Green Version]
- Maeno, E.; Ishizaki, Y.; Kanaseki, T.; Hazama, A.; Okada, Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 2000, 97, 9487–9492. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.J.; Reutelingsperger, C.E.M.; McGahon, A.J.; Rader, J.A.; Rob, C.A.; van Schiew, A.; LaFace, D.M.; Green, D.L. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Ab1. J. Exp. Med. 1995, 182, 1545–1556. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Meng, X.W.; Flatten, K.S.; Loegering, D.A.; Kaufmann, S.H. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ. 2013, 20, 64–76. [Google Scholar] [CrossRef]
- Aoki, K.; Satoi, S.; Harada, S.; Uchida, S.; Iwasa, Y.; Ikenouchi, J. Coordinated changes in cell membrane and cytoplasm during maturation of apoptotic bleb. Mol. Biol. Cell 2020, 31, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Nagata, S. Apoptotic DNA fragmentation. Exp. Cell Res. 2000, 256, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Cima, F.; Ballarin, L. TBT-induced apoptosis in tunicate haemocytes. Appl. Organomet. Chem. 1999, 13, 697–703. [Google Scholar] [CrossRef]
- Marinovich, M.; Viviani, B.; Corsini, E.; Ghilardi, F.; Galli, C.L. NF-kappaB activation by triphenyltin triggers apoptosis in HL-60 cells. Exp. Cell Res. 1996, 226, 98–104. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L. Genotoxicity and immunotoxicity of organotins. In Biochemical and Biological Effects of Organotins; Pagliarani, A., Trombetta, F., Ventrella, V., Eds.; Bentham Science Publishers: Saga, UAE, 2012; pp. 97–111. [Google Scholar]
- Cima, F.; Ballarin, L. TBT-sulfhydryl interaction as a cause of immunotoxicity in tunicates. Ecotoxicol. Environ. Saf. 2004, 58, 386–395. [Google Scholar] [CrossRef]
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 2013, 1830, 3217–3266. [Google Scholar] [CrossRef] [Green Version]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids 2012, 736–837. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.F.; De Oliveira, C.R. Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca(2+) homeostasis. Neurosci. Res. 2000, 37, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Ballarin, L. Ascidian cytotoxic cells: State of the art and research perspectives. Invertebr. Surviv. J. 2012, 9, 1–6. [Google Scholar]
- Franchi, N.; Ballarin, L. Immunity in protochordates: The tunicate perspective. Front. Immunol. 2017, 8, 674. [Google Scholar] [CrossRef]
- Ballarin, L.; Cima, F.; Floreani, M.; Sabbadin, A. Oxidative stress induces cytotoxicity during rejection reaction in the compound ascidian Botryllus schlosseri. Comp. Biochem. Physiol. 2002, 133C, 411–418. [Google Scholar] [CrossRef]
- Ballarin, L.; Cima, F.; Sabbadin, A. Phenoloxidase and cytotoxicity in the compound ascidian Botryllus schlosseri. Dev. Comp. Immunol. 1998, 22, 479–492. [Google Scholar] [CrossRef]
- Goldstein, E.; Bartlema, H.C.; van der Ploeg, M.; van Duijn, P.; van der Stap, J.G.M.M.; Lippert, W. Effect of ozone on lysosomal enzymes of alveolar macrophages engaged in phagocytosis and killing of inhaled Staphylococcus aureus. J. Infect. Dis. 1978, 138, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, R.L. Lysosomal nucleic acid and phosphate metabolism and related metabolic reactions. In Biology of the Lysosome. Subcellular Biochemistry; Lloyd, J.B., Mason, R.W., Eds.; Springer: Boston, MA, USA, 1996; Volume 27, pp. 295–330. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cima, F.; Varello, R. Immunotoxicity in Ascidians: Antifouling Compounds Alternative to Organotins—V. the Case of Dichlofluanid. J. Mar. Sci. Eng. 2020, 8, 396. https://doi.org/10.3390/jmse8060396
Cima F, Varello R. Immunotoxicity in Ascidians: Antifouling Compounds Alternative to Organotins—V. the Case of Dichlofluanid. Journal of Marine Science and Engineering. 2020; 8(6):396. https://doi.org/10.3390/jmse8060396
Chicago/Turabian StyleCima, Francesca, and Roberta Varello. 2020. "Immunotoxicity in Ascidians: Antifouling Compounds Alternative to Organotins—V. the Case of Dichlofluanid" Journal of Marine Science and Engineering 8, no. 6: 396. https://doi.org/10.3390/jmse8060396
APA StyleCima, F., & Varello, R. (2020). Immunotoxicity in Ascidians: Antifouling Compounds Alternative to Organotins—V. the Case of Dichlofluanid. Journal of Marine Science and Engineering, 8(6), 396. https://doi.org/10.3390/jmse8060396