Deep Learning in Unmanned Surface Vehicles Collision-Avoidance Pattern Based on AIS Big Data with Double GRU-RNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. AIS Big Data Compression Based on the Douglas–Peucker Algorithm
- Define a straight line (AB) between two points A and B at the beginning and end of the curve, corresponding to the chord of the curve.
- Obtain (C) on the curve with the largest distance from the straight line segment and calculate the distance (d) from AB.
- Compare the size of a distance using a predefined threshold. If it is less than the threshold, the straight line segment is regarded as an approximation of the curve, and the processing of the curve is completed.
- If the distance is greater than the threshold, use C to divide the curve into two segments (AC and BC) and perform steps 1–3.
- Upon completion of processing for all curves, a polyline formed by connecting each dividing point can be used as an approximation of a curve.
2.2. Identification of the Risk of Collision Based on the Ship Domain
2.3. Training Data Normalization
2.4. Double GRU-RNN Model
2.4.1. GRU Cell Structure
2.4.2. Double RNN Structure
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Gao, M.; Shi, G.; Li, S. Online Prediction of Ship Behavior with Automatic Identification System Sensor Data Using Bidirectional Long Short-Term Memory Recurrent Neural Network. Sensors 2018, 18, 4211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhu, C.; Zhou, Y.; Zhang, W. Vessel Spatio-temporal Knowledge Discovery with AIS Trajectories Using Co-clustering. J. Navig. 2017, 70, 1383–1400. [Google Scholar] [CrossRef]
- Guo, S.S.; Zhang, X.X.; Zheng, Y.Y.; Du, Y. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning. Sensors 2020, 20, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedroche, D.S.; Amigo, D.; García, J.; Molina, J.M. Architecture for Trajectory-Based Fishing Ship Classification with AIS Data. Sensors 2020, 20, 3782. [Google Scholar] [CrossRef]
- Liu, X.X.; Li, Y.Y.; Zhang, J.J.; Zheng, J.J.; Yang, C. Self-Adaptive Dynamic Obstacle Avoidance and Path Planning for USV Under Complex Maritime Environment. IEEE Access 2019, 7, 114945–114954. [Google Scholar] [CrossRef]
- Shi, B.B.; Su, Y.Y.; Zhang, D.; Wang, C.; AbouOmar, M.S. Research on Trajectory Reconstruction Method Using Automatic Identification System Data for Unmanned Surface Vessel. IEEE Access 2019, 7, 170374–170384. [Google Scholar] [CrossRef]
- Lyu, H.; Yin, Y. COLREGS-Constrained Real-time Path Planning for Autonomous Ships Using Modified Artificial Potential Fields. J. Navig. 2019, 72, 588–608. [Google Scholar] [CrossRef]
- Sun, Y.; Ran, X.; Zhang, G.; Xu, H.; Wang, X.-B. AUV 3D Path Planning Based on the Improved Hierarchical Deep Q Network. J. Mar. Sci. Eng. 2020, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Pietrzykowski, Z.; Wołejsza, P.; Borkowski, P. Decision Support in Collision Situations at Sea. J. Navig. 2016, 70, 447–464. [Google Scholar] [CrossRef]
- Guardeño, R.; López, M.J.; Sánchez, J.; Consegliere, A. AutoTuning Environment for Static Obstacle Avoidance Methods Applied to USVs. J. Mar. Sci. Eng. 2020, 8, 300. [Google Scholar] [CrossRef]
- Geng, X.; Wang, Y.; Wang, P.; Zhang, B. Motion Plan of Maritime Autonomous Surface Ships by Dynamic Programming for Collision Avoidance and Speed Optimization. Sensors 2019, 19, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiu, S.; Wen, Y.; Yuan, H.; Xiao, C.; Zhan, W.; Zou, X.; Zhou, C.; Shah, S.C. A Multi-Feature and Multi-Level Matching Algorithm Using Aerial Image and AIS for Vessel Identification. Sensors 2019, 19, 1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakdi, A.; Glad, I.; Vanem, E.; Engelhardtsen, Ø. AIS-Based Multiple Vessel Collision and Grounding Risk Identification based on Adaptive Safety Domain. J. Mar. Sci. Eng. 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Mou, J.M.; Chen, P.F.; He, Y.X.; Zhang, X.J.; Zhu, J.F.; Rong, H. Fast self-tuning spectral clustering algorithm for AIS ship trajectory. J. Harbin Eng. Univ. 2018, 39, 428–432. [Google Scholar]
- Wen, X.; Jiangqiang, H.; Jianchuan, Y.; Ke, L. Ship Automatic Collision Avoidance by Altering Course Based on Ship Dynamic Domain. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/I SPA, Tianjin, China, 23–26 August 2016. [Google Scholar]
- Li, W.; Yang, J.; Gao, X.; Yu, J. Modelling and simulation of intelligent collision avoidance based on ship domain. Int. J. Simul. Process Model. 2020, 15, 64–75. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Mao, J.; Huang, Z.; Huang, C.; Xu, W. CNN-RNN: A Unified Framework for Multi-label Image Classification. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci. Rep. 2018, 8, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Scale | Recommended Threshold/m | Compression Ratio/% |
---|---|---|
<1:3,000,000 | 20 | 97 |
1:2,990,000~1:1,000,000 | 10~20 | 94~97 |
1:990,000~1:2,00,000 | 4~10 | 87~94 |
1:190,000~1:100,000 | 2~4 | 78~87 |
>1:100,000 | 0.2~2 | 36~78 |
MMSI | Heading/° | Course/° | Speed/Kn | Time | Lon/° | Lat/° |
---|---|---|---|---|---|---|
636015XXX | 101 | 101.8 | 11.3 | 1440538896 | 117.911 | 38.95156 |
636015XXX | 100 | 102.4 | 11.3 | 1440538986 | 117.9169 | 38.95053 |
636015XXX | 100 | 101.5 | 11.3 | 1440539076 | 117.9229 | 38.94955 |
636015XXX | 99 | 101.3 | 11.4 | 1440539154 | 117.9289 | 38.94861 |
636015XXX | 100 | 101.3 | 11.3 | 1440539257 | 117.9348 | 38.94771 |
636015XXX | 99 | 100.9 | 11.3 | 1440539346 | 117.9408 | 38.94683 |
636015XXX | 99 | 101.2 | 11.3 | 1440539466 | 117.9487 | 38.94558 |
636015XXX | 99 | 100 | 11.3 | 1440539598 | 117.9574 | 38.94425 |
636015XXX | 99 | 100.4 | 11.3 | 1440539706 | 117.9646 | 38.94327 |
636015XXX | 99 | 99.8 | 11.2 | 1440539826 | 117.9725 | 38.94218 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.-h.; Liu, Z.-j. Deep Learning in Unmanned Surface Vehicles Collision-Avoidance Pattern Based on AIS Big Data with Double GRU-RNN. J. Mar. Sci. Eng. 2020, 8, 682. https://doi.org/10.3390/jmse8090682
Shi J-h, Liu Z-j. Deep Learning in Unmanned Surface Vehicles Collision-Avoidance Pattern Based on AIS Big Data with Double GRU-RNN. Journal of Marine Science and Engineering. 2020; 8(9):682. https://doi.org/10.3390/jmse8090682
Chicago/Turabian StyleShi, Jia-hui, and Zheng-jiang Liu. 2020. "Deep Learning in Unmanned Surface Vehicles Collision-Avoidance Pattern Based on AIS Big Data with Double GRU-RNN" Journal of Marine Science and Engineering 8, no. 9: 682. https://doi.org/10.3390/jmse8090682
APA StyleShi, J. -h., & Liu, Z. -j. (2020). Deep Learning in Unmanned Surface Vehicles Collision-Avoidance Pattern Based on AIS Big Data with Double GRU-RNN. Journal of Marine Science and Engineering, 8(9), 682. https://doi.org/10.3390/jmse8090682