Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviations | Meaning |
IMO | International Maritime Organization |
MDO | Marine diesel oil |
M | Methanol |
B | Biodiesel |
B6.8 | Blend that contains 6.8% biodiesel (volume basis) |
B10 | Blend that contains 10% biodiesel (volume basis) |
References
- Svanberg, M.; Ellis, J.; Lundgren, J.; Landval, I. Renewable methanol as a fuel for the shipping industry. Renew. Sustain. Energy Rev. 2018, 94, 1217–1228. [Google Scholar] [CrossRef]
- Sahin, B.; Yilmaz, H.; Ust, Y.; Fuat Guneri, A.; Gulsun, B.; Turan, E. An Approach for Economic Analysis of Intermodal Transportation. Sci. World J. 2014, 630320. [Google Scholar] [CrossRef]
- Bialystocki, N.; Konovessis, D. On the estimation of ship’s fuel consumption and speed curve: A statistical approach. J. Ocean Eng. Sci. 2016, 1, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- World Health Organization. Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 14 August 2020).
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannis, T.C.; Yfantis, E.A.; Pagagiannakis, R.; Levendis, Y. Chapter 1: Critical Review of Conventional Fuel Composition and Properties on Diesel Engine Performance and Pollutant Emissions. In Diesel Fuels: Characteristics, Performance and Environmental Impacts; Silva, C., Rivera, A., Eds.; Nova Science Publishers: New York, NY, USA, 2013. [Google Scholar]
- Erdiwansyah, M.R.; Sani, M.S.; Sudhakar, K.; Sardjono, R.E. An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Rep. 2019, 5, 467–479. [Google Scholar] [CrossRef]
- Kumar Agarwal, A. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Ivančić Šantek, M.; Komes, D.; Novak, S.; Šantek, B. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef]
- Kalligeros, S.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G.; Teas, C.; Sakellaropoulos, F. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass Bioenergy 2003, 24, 141–149. [Google Scholar] [CrossRef]
- Morone, P.; Strzalkowski, A.; Tani, A. Chapter 2—Biofuel transitions: An overview of regulations and standards for a more sustainable framework. In Biofuels for a More Sustainable Future—Life Cycle Sustainability Assessment and Multi-Criteria Decision Making; Ren, J., Scipioini, A., Manzardo, A., Liang, H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 21–46. [Google Scholar] [CrossRef]
- Mishra, V.K.; Goswami, R. A review of production properties and advantages of biodiesel. Biofuels 2018, 9, 273–289. [Google Scholar] [CrossRef]
- Pollitt, K.J.G.; Chhan, D.; Rais, K.; Pan, K.; Wallace, J.S. Biodiesel fuels: A greener diesel? A review from a health perspective. Sci. Total Environ. 2019, 688, 1036–1055. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.J.; Kersten, S.R.A.; Brilman, D.W.F. Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture. Appl. Energy 2020, 264, 114672. [Google Scholar] [CrossRef]
- Shamsul, N.S.; Kamarudin, S.K.; Rahman, N.A.; Kofli, N.T. An overview on the production of bio-methanol as potential renewable energy. Renew. Sustain. Energy Rev. 2014, 33, 578–588. [Google Scholar] [CrossRef]
- Hajba, L.; Eller, Z.; Nagy, E.; Hancsok, J. Properties of diesel–alcohol blends. Hung. J. Ind. Chem. 2011, 39, 349–352. [Google Scholar]
- Yasin, M.H.; Mamat, R.; Aziza, A.; Najafi, G. Comparative Study on Biodiesel-methanol-diesel Low Proportion Blends Operating with a Diesel Engine. Energy Procedia 2015, 75, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Lapuerta, M.; Armas, O.; Garcia-Contreras, R. Stability of diesel–bioethanol blends for use in diesel engines. Fuel 2007, 86, 1351–1357. [Google Scholar] [CrossRef]
- Kumar, S.; Cho, J.H.; Park, J.; Moon, I. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines. Renew. Sustain. Energy Rev. 2013, 22, 46–72. [Google Scholar] [CrossRef]
- Amine, M.; Barakat, Y. Properties of gasoline-ethanol-methanol ternary fuel blend compared with ethanol-gasoline and methanol-gasoline fuel blends. Egypt. J. Pet. 2019, 28, 371–376. [Google Scholar] [CrossRef]
- Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, A.; Rashed, M.M.; Ashrafu, A.M. Influences of ignition improver additive on ternary (diesel-biodiesel-higher alcohol) blends thermal stability and diesel engine performance. Energy Convers. Manag. 2016, 123, 252–264. [Google Scholar] [CrossRef]
- Fan, C.; Song, C.; Lv, G.; Wang, G.; Zhou, H.; Jing, X. Evaluation of carbonyl compound emissions from a non-road machinery diesel engine fueled with a methanol/diesel blend. Appl. Therm. Eng. 2018, 129, 1382–1391. [Google Scholar] [CrossRef]
- Kuszewski, H. Effect of adding 2-ethylhexyl nitrate cetane improver on the autoignition properties of ethanol-diesel fuel blend—Investigation at various ambient gas temperatures. Fuel 2018, 224, 57–67. [Google Scholar] [CrossRef]
- Lin, C.-Y. Blending biodiesel in fishing boat fuels for improved fuel characteristics. Front. Energy Res. 2014, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Demirbas, A. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manag. 2018, 174, 579–614. [Google Scholar] [CrossRef]
- Greenacre, M.; Primicerio, R. Multivariate Analysis of Ecologic Data; Fundacion BBVA: Bilbao, Spain, 2013. [Google Scholar]
- Zuur, A.; Ieno, E.N.; Smith, G.M. Analysing Ecological Data; Springer: New York, NY, USA, 2007; p. 667. [Google Scholar]
- Oksanen, J.; Guillaume Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 September 2019).
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 1 April 2020).
- Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. R package version 1.4.4. 2020. Available online: https://CRAN.R-project.org/package=PMCMRplus (accessed on 12 September 2020).
- Duraisamy, G.; Rangasamy, M.; Govindan, N. A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renew. Energy 2020, 145, 542–556. [Google Scholar] [CrossRef]
- Tian, J.; Tan, J.; Hu, N.; Liu, T.; Wang, Y.; Zhong, H. Characteristics analysis for total volatile organic compounds emissions of methanol-diesel fuel. J. Energy Inst. 2018, 91, 527–533. [Google Scholar] [CrossRef]
- Mat Yasin, M.H.; Mamat, R.; Yusop, A.F.; Rahim, R.; Aziz, A.; Shah, L.A. Fuel Physical Characteristics of Biodiesl Blend Fuels with Alcohol as Additives. Procedia Eng. 2013, 53, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Bhale, P.V.; Deshpande, N.V.; Thombre, S.B. Improving the low temperature properties of biodiesel. Renew. Energy 2009, 34, 794–800. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Kumar Sharma, P.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2019, 262, 116553. [Google Scholar] [CrossRef]
Parameter | Standards for Estimation of the Parameters | ISO 8217:2017 Limits (DMB Grade) | Measured Values for the Blend Components | ||
---|---|---|---|---|---|
Diesel | Biodiesel | Methanol | |||
Density at 15 °C, kg m−3 | EN ISO 3675:1999 | Max 900 | 843 ± 0.01 | 877 ± 0.01 | 797 ± 0.01 |
Kinematic viscosity at 40 °C, mm2 s−1 | EN ISO 3104:1994 | Min 2.00 | 2.80 ± 0.01 | 4.30 ± 0.01 | 1.01 ± 0.01 |
Max 11.00 | |||||
Distillation | ASTM D86-20 | - | 250 °C—33% | - | - |
350 °C—95% | |||||
Calculated cetane index | ASTM D976-06(16) | Min 35 | 51 | 50 | 5 |
Flash point, °C | EN ISO 2719:2016 | Min 60 | 62 | 120 ± 1 | 11 ± 1 |
Cloud point, °C | EN 3015:2019 | - | Minus 19 ± 1 | Minus 12 ± 1 | Minus 98 ± 1 |
Gross calorific value, MJ kg−1 | DIN 51900-3:2003 | - | - | 40 ± 0.01 | 23 ± 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Paulauskiene, T.; Uebe, J.; Bucas, M. Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications. J. Mar. Sci. Eng. 2020, 8, 730. https://doi.org/10.3390/jmse8090730
Wang Z, Paulauskiene T, Uebe J, Bucas M. Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications. Journal of Marine Science and Engineering. 2020; 8(9):730. https://doi.org/10.3390/jmse8090730
Chicago/Turabian StyleWang, Zhongcheng, Tatjana Paulauskiene, Jochen Uebe, and Martynas Bucas. 2020. "Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications" Journal of Marine Science and Engineering 8, no. 9: 730. https://doi.org/10.3390/jmse8090730
APA StyleWang, Z., Paulauskiene, T., Uebe, J., & Bucas, M. (2020). Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications. Journal of Marine Science and Engineering, 8(9), 730. https://doi.org/10.3390/jmse8090730