Red Sea MODIS Estimates of Chlorophyll a and Phytoplankton Biomass Risks to Saudi Arabian Coastal Desalination Plants
Abstract
:1. Introduction
2. Methods
2.1. Ship-Based Coastal Red Sea Surveys
2.2. Chlorophyll a
2.3. Fluorescence Line Height
2.4. Long-Term Red Sea Phytoplankton Biomass Mapping
3. Results
3.1. Ship-Based Phytoplankton Densities
3.2. Accuracy of MODIS Chl a and FLH Values for Estimating Total Phytoplankton
3.3. Phytoplankton Biomass Zone Delineation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stumpf, R.P.; Culver, M.; Tester, P.; Tomlinson, M.; Kirkpatrick, G.; Pederson, B.; Truby, E.; Ransibrahmanakul, V.; Soracco, M. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2003, 2, 147–160. [Google Scholar] [CrossRef]
- Hu, C.; Muller-Karger, F.E.; Taylor, C.J.; Carder, K.L.; Kelble, C.; Johns, E.; Heil, C.A. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 2005, 97, 311–321. [Google Scholar] [CrossRef]
- Richlen, M.L.; Morton, S.L.; Jamali, E.A.; Rajan, A.; Anderson, D.M. The catastrophic 2008–2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 2010, 9, 163–172. [Google Scholar] [CrossRef]
- Brandenburg, K.M.; Domis, L.N.D.S.; Wohlrab, S.; Krock, B.; John, U.; Van Scheppingen, Y.; Van Donk, E.; Van De Waal, D.B. Combined physical, chemical and biological factors shape Alexandrium ostenfeldii blooms in The Netherlands. Harmful Algae 2017, 63, 146–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.-X.; Yu, R.-C.; Zhou, M.-J. Resolving the complex relationship between harmful algal blooms and environmental factors in the coastal waters adjacent to the Changjiang River estuary. Harmful Algae 2017, 62, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Xie, G.; Tian, J.; Tseng, K.-H.; Shum, C.K.; Lee, J.; Liang, S. Spatiotemporal variability and environmental factors of harmful algal blooms (HABs) over western Lake Erie. PLoS ONE 2017, 12, e0179622. [Google Scholar] [CrossRef]
- Larsson, M.E.; Ajani, P.A.; Rubio, A.M.; Guise, K.; McPherson, R.G.; Brett, S.J.; Davies, K.P.; Doblin, M.A. Long-term perspective on the relationship between phytoplankton and nutrient concentrations in a southeastern Australian estuary. Mar. Pollut. Bull. 2017, 114, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Lu, X.; Dong, Y.; Cen, J.; Cao, R.; Pan, L.; Lü, S.; Ou, L.-J. Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: A region with recurrent brown tide outbreaks. Ecotoxicol. Environ. Saf. 2018, 159, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.B.; Miller, C.; Arhonditsis, G.; Boyer, G.L.; Carmichael, W.; Charlton, M.N.; Confesor, R.; DePew, D.C.; Höök, T.O.; Ludsin, S.A.; et al. The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 2016, 56, 44–66. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Tomlinson, M.C. Remote sensing of harmful algal blooms. In Remote Sensing of Coastal Aquatic Environments; Miller, R.L., Del Castillo, C.E., McKee, B.E., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 277–296. [Google Scholar]
- Genin, A.; Lazar, B.; Brenner, S. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nat. Cell Biol. 1995, 377, 507–510. [Google Scholar] [CrossRef]
- Laycock, M.V.; Anderson, N.M.; Naar, J.; Goodman, A.; Easy, D.J.; Donovan, M.A.; Li, A.; Quilliam, M.A.; Al Jamali, E.; Alshihi, R. Laboratory desalination experiments with some algal toxins. Desalination 2012, 293, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Eppley, R. Temperature and phytoplankton growth in the sea. Fish. Bull. 1972, 70, 1063–1085. [Google Scholar]
- Banse, K. Seasonality of phytoplankton chlorophyll in the central and northern Arabian sea. Deep Sea Res. Part A Oceanogr. Res. Pap. 1987, 34, 713–723. [Google Scholar] [CrossRef]
- Ahn, Y.-H.; Shanmugam, P. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters. Remote Sens. Environ. 2006, 103, 419–437. [Google Scholar] [CrossRef]
- Wang, C. Automatic Red Tide Detection Using MODIS Satellite Images. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2009. [Google Scholar]
- Zhao, J.; Ghedira, H. Monitoring red tide with satellite imagery and numerical models: A case study in the Arabian Gulf. Mar. Pollut. Bull. 2014, 79, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Raitsos, D.E.; Pradhan, Y.; Brewin, R.J.W.; Stenchikov, G.; Hoteit, I. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea. PLoS ONE 2013, 8, e64909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Shehhi, M.R.; Gherboudj, I.; Zhao, J.; Mezhoud, N.; Ghedira, H. Evaluating the performance of MODIS FLH ocean color algorithm in detecting the Harmful Algae Blooms in the Arabian Gulf and the Gulf of Oman. In Proceedings of the Oceans 2013 MTS/IEEE Conference, San Diego, CA, USA, 23–27 September 2013. [Google Scholar]
- Reguera, B.; Alonso, R.; Moreira, A.; Méndez, S.; Dechraoui-Bottein, M.-Y. Guide for Designing and Implementing a Plan to Monitor Toxin-Producing Microalgae, 2nd ed.; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2016; pp. 1–66. [Google Scholar]
- Gomaa, M.N.; Hannachi, I.; Carmichael, W.W.; Al-Hazmi, M.A.; Abouwarda, A.M.; Mostafa, E.A.; Mohamed, H.E.; Sheikho, K.M.; Mulla, D.J. Low diversity triggers harmful algae bloom (HAB) occurrence adjacent to desalination plants along the Red Sea. Desalin. Water Treat. 2018, 114, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dolan, J.R.; Marasse, C. Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, NW Mediterranean, June 1993. Deep Sea Res. 1995, 42, 1965–1987. [Google Scholar] [CrossRef]
- Utermöhl, H. Zurvervolkommungder quantitativen phytoplankton Methodik. Mitt. Int. Ver. Theor. Angew. Limnol. 1958, 9, 1–38. [Google Scholar]
- NASA Goddard Space Flight Center; Ocean Ecology Laboratory; Ocean Biology Processing Group. Coastal Zone Color Scanner Experiment (CZCS) Chlorophyll Data; 2014 Reprocessing; NASA OB.DAAC: Greenbelt, MD, USA, 2014. [CrossRef]
- Meister, G.; Franz, B.A. Corrections to the MODIS Aqua Calibration Derived from Modis Aqua Ocean Color Products. IEEE Trans. Geosci. Remote. Sens. 2014, 52, 6534–6541. [Google Scholar] [CrossRef]
- Tomlinson, M.C.; Wynne, T.; Stumpf, R. An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis. Remote Sens. Environ. 2009, 113, 598–609. [Google Scholar] [CrossRef]
- NASA Goddard Space Flight Center; Ocean Ecology Laboratory; Ocean Biology Processing Group. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua Fluorescence Line Height Data; 2014 Reprocessing; NASA OB.DAAC: Greenbelt, MD, USA, 2014.
- Mao, Z.; Mao, Z.; Jamet, C.; Linderman, M.A.; Wang, Y.; Chen, X. Seasonal Cycles of Phytoplankton Expressed by Sine Equations Using the Daily Climatology from Satellite-Retrieved Chlorophyll-a Concentration (1997–2019) Over Global Ocean. Remote Sens. 2020, 12, 2662. [Google Scholar] [CrossRef]
- Gomaaa, M.N.; Al-Hazmic, M.A.; Mohamed, H.E.; Mullae, D.J.; Hannachid, I.; Sheikhof, K.M.; Abouwardad, A.M.; Mostafad, E.A.H.; Carmichaelg, W.W. A model to predict HAB occurrence near desalination plants in the Red Sea. Desalin. Water Treatment 2018, 129, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Al Shehhi, M.R.; Gherboudj, I.; Ghedira, H. An overview of historical harmful algae blooms outbreaks in the Arabian Seas. Mar. Pollut. Bull. 2014, 86, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Temimi, M.; Ghedira, H. Characterization of harmful algal blooms (HABs) in the Arabian Gulf and the Sea of Oman using MERIS fluorescence data. ISPRS J. Photogramm. Remote. Sens. 2015, 101, 125–136. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Al Kitbi, S.; Mezhoud, N. Monitoring HABs in the shallow Arabian Gulf using a qualitative satellite-based index. Int. J. Remote Sens. 2016, 37, 1937–1954. [Google Scholar] [CrossRef]
- Kim, Y.; Yoo, S.; Son, Y.B. Optical discrimination of harmful Cochlodinium polykrikoides blooms in Korean coastal waters. Opt. Express 2016, 24, A1471–A1488. [Google Scholar] [CrossRef] [PubMed]
- Gárate-Lizárraga, I. Bloom of Cochlodinium polykrikoides (Dinophyceae: Gymnodiniales) in Bahía de La Paz, Gulf of California. Mar. Pollut. Bull. 2013, 67, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Dorantes-Aranda, J.J.; La Parra, L.M.G.-D.; Alonso-Rodríguez, R.; Morquecho, L.; Voltolina, D. Toxic effect of the harmful dinoflagellate Cochlodinium polykrikoides on the spotted rose snapper Lutjanus guttatus. Environ. Toxicol. 2009, 25, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.-S.; Park, M.; Hwang, J.; Kil, E.-J.; Lee, S.; Lee, T.-K. Detection of the dinoflagellate, Cochlodinium polykrikoides, that forms algal blooms using sandwich hybridization integrated with nuclease protection assay. Biotechnol. Lett. 2015, 38, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Al-Mufta, A.; Selwood, A.I.; Foss, A.J.; Al Jabri, H.; Potts, M.; Yilmaz, M. Algal toxins and producers in the marine waters of Qatar, Arabian Gulf. Toxicon 2016, 122, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Rao, D. Short communication. Biomass and production characteristics of the first red tide noticed in Kuwait Bay, Arabian Gulf. J. Plankton Res. 1999, 21, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Blondeau-Patissier, D.; Gower, J.F.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Judice, T.J.; Widder, E.A.; Falls, W.H.; Avouris, D.M.; Cristiano, D.J.; Ortiz, J. Field-Validated Detection of Aureoumbra lagunensis Brown Tide Blooms in the Indian River Lagoon, Florida, Using Sentinel-3A OLCI and Ground-Based Hyperspectral Spectroradiometers. GeoHealth 2020, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tian, L.; Song, Q.; Sun, Z.; Yu, H.; Xing, Q. Temporal Variation of Chlorophyll-a Concentrations in Highly Dynamic Waters from Unattended Sensors and Remote Sensing Observations. Sensors 2018, 18, 2699. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, B.; Yang, W.; Chang, P.; Yang, F.; Fukushima, T. A simple method for distinguishing global Case-1 and Case-2 waters using SeaWiFS measurements. ISPRS J. Photogramm. Remote Sens. 2012, 69, 74–87. [Google Scholar] [CrossRef] [Green Version]
- Overmans, S.; Agustí, S. Latitudinal Gradient of UV Attenuation Along the Highly Transparent Red Sea Basin. Photochem. Photobiol. 2019, 95, 1267–1279. [Google Scholar] [CrossRef]
- Zhang, Y.; Pulliainen, J.; Koponen, S.; Hallikainen, M. Water quality retrievals from combined landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Trans. Geosci. Remote Sens. 2003, 41, 622–629. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of chlorophyll- a concentration in case II waters using MODIS and MERIS data-successes and challenges. Environ. Res. Lett. 2009, 4, 45005. [Google Scholar] [CrossRef] [Green Version]
- El-Adawy, A.A.; Nadaoka, K.; Negm, A.; Abdel-Fattah, S.; Hanafy, M.; Shaltout, M. Characterization of the northern Red Sea’s oceanic features with remote sensing data and outputs from a global circulation model. Oceanologia 2017, 59, 213–237. [Google Scholar] [CrossRef]
- Villacorte, L.O.; Tabatabai, A.; Anderson, D.M.; Amy, G.L.; Schippers, J.C.; Kennedy, M.D. Seawater reverse osmosis desalination and (harmful) algal blooms. Desalination 2015, 360, 61–80. [Google Scholar] [CrossRef]
- Dehwah, A.H.A.; Al-Mashharawi, S.; Kammourie, N.; Missimer, T.M. Impact of well intake systems on bacterial, algae, and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia. Desalin. Water Treat. 2014, 55, 2594–2600. [Google Scholar] [CrossRef]
- Anderson, C.R.; Moore, S.K.; Tomlinson, M.C.; Silke, J.; Cusack, C.K. Living with harmful algal blooms in a changing world: Strategies for modeling and mitigating their effects in coastal marine systems. In Coastal and Marine Hazards, Risks, and Disasters; Sherman, D., Ellis, J., Shroder, J., Eds.; Elsevier Inc.: New York, NY, USA, 2015. [Google Scholar]
- Maguire, J.; Cusack, C.; Ruiz-Villarreal, M.; Silke, J.; McElligott, D.; Davidson, K. Applied simulations and integrated modelling for the understanding of toxic and harmful algal blooms (ASIMUTH): Integrated HAB forecast systems for Europe’s Atlantic Arc. Harmful Algae 2016, 53, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Kurekin, A.A.; Miller, P.I.; Van Der Woerd, H.J. Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: Merged classification of ocean colour data. Harmful Algae 2014, 31, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; El-Askary, H.M.; Manikandan, P.; Qurban, M.A.; Garay, M.J.; Kalashnikova, O.V. Synergistic Use of Remote Sensing and Modeling to Assess an Anomalously High Chlorophyll-a Event during Summer 2015 in the South Central Red Sea. Remote Sens. 2017, 9, 778. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wu, Y.; Fang, Z.; Cui, X.; Liang, J.; Song, X. Spatiotemporal Patterns and Morphological Characteristics of Ulva prolifera Distribution in the Yellow Sea, China in 2016–2018. Remote Sens. 2019, 11, 445. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomaa, M.N.; Mulla, D.J.; Galzki, J.C.; Sheikho, K.M.; Alhazmi, N.M.; Mohamed, H.E.; Hannachi, I.; Abouwarda, A.M.; Hassan, E.A.; Carmichael, W.W. Red Sea MODIS Estimates of Chlorophyll a and Phytoplankton Biomass Risks to Saudi Arabian Coastal Desalination Plants. J. Mar. Sci. Eng. 2021, 9, 11. https://doi.org/10.3390/jmse9010011
Gomaa MN, Mulla DJ, Galzki JC, Sheikho KM, Alhazmi NM, Mohamed HE, Hannachi I, Abouwarda AM, Hassan EA, Carmichael WW. Red Sea MODIS Estimates of Chlorophyll a and Phytoplankton Biomass Risks to Saudi Arabian Coastal Desalination Plants. Journal of Marine Science and Engineering. 2021; 9(1):11. https://doi.org/10.3390/jmse9010011
Chicago/Turabian StyleGomaa, M. N., D. J. Mulla, J. C. Galzki, K. M. Sheikho, N. M. Alhazmi, H. E. Mohamed, I. Hannachi, A. M. Abouwarda, E. A. Hassan, and W. W. Carmichael. 2021. "Red Sea MODIS Estimates of Chlorophyll a and Phytoplankton Biomass Risks to Saudi Arabian Coastal Desalination Plants" Journal of Marine Science and Engineering 9, no. 1: 11. https://doi.org/10.3390/jmse9010011
APA StyleGomaa, M. N., Mulla, D. J., Galzki, J. C., Sheikho, K. M., Alhazmi, N. M., Mohamed, H. E., Hannachi, I., Abouwarda, A. M., Hassan, E. A., & Carmichael, W. W. (2021). Red Sea MODIS Estimates of Chlorophyll a and Phytoplankton Biomass Risks to Saudi Arabian Coastal Desalination Plants. Journal of Marine Science and Engineering, 9(1), 11. https://doi.org/10.3390/jmse9010011