Oil Spill Detection Using LBP Feature and K-Means Clustering in Shipborne Radar Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Shipborne Radar Image
2.2. Experimental Procedures
2.3. Methods of Data Preprocessing
2.3.1. Coordinate System Transformation
2.3.2. Laplace Operator
2.3.3. Mean Filter
2.3.4. GICM
2.3.5. CLAHE
2.4. Methods of Oil Film Segmentation
2.4.1. Local Binary Pattern
2.4.2. K-Means
- K initial cluster centers ci (i = 1, 2, …, K) are selected randomly from the set S where S = {x1, x2, …, xn}.
- According to the similarity, the distance from each remaining instance to each cluster center is calculated and classified into the nearest cluster center category.
- The arithmetic mean of each cluster is recalculated as a new cluster center as:
- Judge the convergence of data clustering, if it tends to be stable, the clustering is over, otherwise continue to iterative calculation steps (b) and (c).
2.4.3. Local Adaptive Threshold
3. Results
3.1. Data Preprocessing
3.2. Oil Spill Segmentation
4. Discussion
4.1. Comparison of the Texture Features Applicability of LBP and GLCM
4.2. Local Window Dimension Selection for Texture Feature Extraction
4.3. Comparison between Local Adaptive Threshold and Single Threshold
4.4. Comparison with Other Local Adaptive Thresholds
4.5. Comparison with Other Machine Learning Oil Spill Detection Method
4.6. Comparison with ACM
4.7. Advantages and Disadvantages of Shipborne Radar Oil Spill Detection Technology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lourenco, R.A.; Combi, T.; Alexandre, M.R.; Sasaki, S.T.; Zanardi-Lamardo, E.; Yogui, G.T. Mysterious oil spill along Brazil’s northeast and southeast seaboard (2019–2020): Trying to find answers and filling data gaps. Mar. Pollut. Bull. 2020, 15, 111219. [Google Scholar] [CrossRef] [PubMed]
- Abidli, A.; Huang, Y.; Cherukupally, P.; Bilton, A.; Park, C.B. Novel separator skimmer for oil spill cleanup and oily wastewater treatment: From conceptual system design to the first pilot-scale prototype development. Environ. Technol. Innov. 2020, 18, 100598. [Google Scholar] [CrossRef]
- Wang, Z.; Saleem, J.; Barford, J.P.; McKay, G. Preparation and characterization of modified rice husks by biological deligni-fication and acetylation for oil spill cleanup. Environ. Technol. 2020, 41, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Panahi, S.; Moghaddam, M.K.; Moezzi, M. Assessment of milkweed floss as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. J. Environ. Manag. 2020, 268, 110688. [Google Scholar] [CrossRef]
- Yang, J.; Ge, Y.; Ge, Q.; Xi, J.; Li, X. Determinants of island tourism development: The example of Dachangshan Island. Tour. Manag. 2016, 55, 261–271. [Google Scholar] [CrossRef]
- Aznar, F.; Sempere, M.; Pujol, M.; Rizo, R. Modelling Oil-Spill Detection with Swarm Drones. Abstr. Appl. Anal. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Zeng, K.; Wang, Y. A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images. Remote Sens. 2020, 12, 1015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Wei, J.; Li, J. Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on SuperPixel Model. Remote Sens. 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Z.Y.; Jia, G.Z.; Cai, Y.J. A new approach to oil spill detection that combines deep learning with unmanned aerial vehi-cles. Comput. Ind. Eng. 2018, 135, 1300–1311. [Google Scholar] [CrossRef]
- Tennyson, E. Shipboard navigational radar as an oil spill tracking tool-a preliminary assessment. In Proceedings of the Annual Meeting for the OCEANS, Baltimore, MD, USA, October 31–2 November 1988; Volume 3, pp. 857–859. [Google Scholar] [CrossRef]
- Tennyson, E.J. 4933678 Method of detecting oil spills at sea using a shipborne navigational radar. Mar. Pollut. Bull. 1990, 21, 551. [Google Scholar] [CrossRef]
- Atanassov, V.; Mladenov, L.; Rangelov, R.; Savchenko, A. Observation of Oil Slicks on the Sea Surface by Using Marine Navigation Radar. In Proceedings of the Annual Meeting for the IGARSS, Espoo, Finland, 3–6 June 1991; pp. 1323–1326. [Google Scholar] [CrossRef]
- Gangeskar, R. Automatic oil-spill detection by marine X-band radars. Sea Technol. 2004, 45, 40–45. [Google Scholar]
- Nost, E.; Egset, C.N. Oil spill detection system results from field trials. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006; pp. 1–6. [Google Scholar] [CrossRef]
- Nost, E.; Egset, C.N. Oil spill detection system based on marine X-band radar. Sea Technol. 2007, 48, 41–45. [Google Scholar]
- Zhu, X.; Li, Y.; Feng, H.; Liu, B.; Xu, J. Oil spill detection method using X-band marine radar imagery. J. Appl. Remote Sens. 2015, 9, 095985. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Xu, J.; Zhu, X. Adaptive Enhancement of X-Band Marine Radar Imagery to Detect Oil Spill Segments. Sensors 2017, 17, 2349. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, P.; Wang, H.; Lian, J.; Li, B. Marine Radar Oil Spill Monitoring Technology Based on Dual-Threshold and C–V Level Set Methods. J. Indian Soc. Remote Sens. 2018, 46, 1949–1961. [Google Scholar] [CrossRef]
- Xu, J.; Cui, C.; Feng, H.; You, D.; Wang, H.; Li, B. Marine Radar Oil-Spill Monitoring through Local Adaptive Thresholding. Environ. Forensics 2019, 20, 196–209. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Xu, J.; Wang, T. Oil spill extraction by X-band marine radar using texture analysis and adaptive thresholding. Remote Sens. Lett. 2019, 10, 583–589. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Liu, B.; Chen, P.; Xu, J. Semi-Automatic oil spill detection on X-band marine radar images using texture analy-sis, machine learning, and adaptive thresholding. Remote Sens. 2019, 11, 756. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, H.; Cui, C.; Liu, P.; Zhao, Y.; Li, B. Oil spill segmentation in shipborne radar images with an improved ac-tive contour model. Remote Sens. 2019, 11, 1698. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, H.; Cui, C.; Zhao, B.; Li, B. Oil spill monitoring of shipborne radar image features using SVM and Local Adap-tive Threshold. Algorithms 2020, 13, 69. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Xu, L.; Clausi, D. Exploring the potential of active learning for automatic identification of marine oil spills using 10-Year (2004–2013) RADASAT data. Remote Sens. 2017, 9, 1041. [Google Scholar] [CrossRef] [Green Version]
- Alireza, T.; Natascha, O. Adaptive Weibull Multiplicative Model and Multilayer Perceptron neural networks for dark-spot detection from SAR imagery. Sensors 2014, 14, 22798. [Google Scholar]
- Liu, B.; Li, Y.; Li, G.; Liu, A. A Spectral Feature Based Convolutional Neural Network for Classification of Sea Surface Oil Spill. ISPRS Int. J. Geo-Inf. 2019, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, Y.; Sun, G.; Zhang, Y. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images. Appl. Sci. 2017, 7, 968. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Brenning, A. A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery. Remote Sens. Environ. 2014, 141, 14–23. [Google Scholar] [CrossRef]
- Chen, T.; Lu, S.J. Subcategory-Aware Feature Selection and SVM optimization for automatic aerial image-based oil spill in-spection. IEEE Trans. Geosci. Remote Sens. 2017, 9, 968. [Google Scholar]
- Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization. Graph. Gems 1994, 5, 474–485. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 582–585. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Harwood, D. A comparative study of texture measures with classification based on featured dis-tributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local bi-nary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, June 21–18 July, Berkeley, CA, USA, 1st ed.; Le Cam, L., Neyman, J., Eds.; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Hu, L.; Yin, Y. A grouping genetic algorithm for the multi-objective cell formation problem. Int. J. Prod. Res. 2005, 43, 829–853. [Google Scholar] [CrossRef]
- Fisher, W.D. On grouping for maximum homogeneity. J. Am. Statist. Assoc. 2012, 53, 789–798. [Google Scholar] [CrossRef]
- Sebestyen, G.S. Decision-Making Processes in Pattern Recognition; ACM Monograph Series; Macmillan Publishing Co., Inc.: New York, NY, USA, 1962. [Google Scholar]
- Larijani, M.R.; Ezzatollah, A.A.A.; Kozegar, E.; Reyhaneh, L. Evaluation of image processing technique in identifying rice blast disease in field conditions based on KNN algorithm improvement by K-means. Food Nutr. 2019, 7, 3922–3930. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.; Cen, H.; Abdel-Rahman, E.M.; Wan, L.; He, Y. Color Calibration of Proximal Sensing RGB Images of Oilseed Rape Canopy via Deep Learning Combined with K-Means Algorithm. Remote Sens. 2019, 11, 3001. [Google Scholar] [CrossRef] [Green Version]
- Capor-Hrosik, R.; Tuba, E.; Dolicanin, E.; Jovanovic, R.; Tuba, M. Brain Image Segmentation Based on Firefly Algorithm Combined with K-means Clustering. Stud. Inform. Control 2019, 28, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Niblack, W. An Introduction to Digital Image Processing; Prentice Hall: Englewood Cliffs, NJ, USA, 1986; pp. 115–116. [Google Scholar]
- Sauvola, J.J.; Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 2000, 33, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Phansalskar, N.; More, S.; Sabale, A.; Joshi, M. Adaptive local thresholding for detection of nuclei in diversity stained cytolo-gy images. In Proceedings of the 2011 International Conference on Communications and Signal Processing, Calicut, India, 10–12 February 2011; pp. 218–220. [Google Scholar] [CrossRef]
- Bernsen, J. Dynamic thresholding of gray-level images. In Proceedings of the Eighth International Conference on Pattern Recognition, Paris, France, 27 October 1986; pp. 1251–1255. [Google Scholar]
- Li, C.; Kao, C.-Y.; Gore, J.C.; Ding, Z. Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Trans. Image Process. 2008, 17, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Product type | Sperry Marine B.V. |
Band | X-band |
Detection range | 0.5/0.75/1.5.3.6.12 NM |
Antenna type | Waveguide split antenna |
Polarization mode | Horizontal |
Horizontal detection angle | 360° |
Rotation speed | 28–45 revolutions/min |
Length of antenna | 8 ft |
Pulse repetition frequency | 3000 Hz/1800 Hz/785 Hz |
Pulse width | 50 ns/250 ns/750 ns |
Window Dimension (Pixels) | Compute Time (Second) |
---|---|
64 × 64 | 3.3 |
128 × 128 | 7.4 |
256 × 256 | 23.2 |
512 × 512 | 88.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Pan, X.; Jia, B.; Wu, X.; Liu, P.; Li, B. Oil Spill Detection Using LBP Feature and K-Means Clustering in Shipborne Radar Image. J. Mar. Sci. Eng. 2021, 9, 65. https://doi.org/10.3390/jmse9010065
Xu J, Pan X, Jia B, Wu X, Liu P, Li B. Oil Spill Detection Using LBP Feature and K-Means Clustering in Shipborne Radar Image. Journal of Marine Science and Engineering. 2021; 9(1):65. https://doi.org/10.3390/jmse9010065
Chicago/Turabian StyleXu, Jin, Xinxiang Pan, Baozhu Jia, Xuerui Wu, Peng Liu, and Bo Li. 2021. "Oil Spill Detection Using LBP Feature and K-Means Clustering in Shipborne Radar Image" Journal of Marine Science and Engineering 9, no. 1: 65. https://doi.org/10.3390/jmse9010065
APA StyleXu, J., Pan, X., Jia, B., Wu, X., Liu, P., & Li, B. (2021). Oil Spill Detection Using LBP Feature and K-Means Clustering in Shipborne Radar Image. Journal of Marine Science and Engineering, 9(1), 65. https://doi.org/10.3390/jmse9010065