Bathymetric Data Requirements for Operational Coastal Erosion Forecasting Using XBeach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Representative and Synthetic Pre-Storm Bathymetries
2.2.1. Pre-Storm Surveyed Bathymetry
2.2.2. Average Bathymetry
2.2.3. Dean5 Bathymetry
2.2.4. Dean10 Bathymetry
2.2.5. Upper Bathymetry
2.2.6. Lower Bathymetry
2.3. Storm Events
2.4. XBeach Modelling
2.4.1. Model Calibration
2.4.2. Evaluation of Model Predictive Skill
3. Results and Discussion
3.1. Influence of Initial Bathymetry on Sub-Aerial Beach Erosion Predictions
3.2. Adjustment of Optimal Model Parameters to Pre-Storm Bathymetry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baart, F.; van Ormondt, M.; van Thiel de Vries, J.S.M.; van Koningsveld, M. Morphological impact of a storm can be predicted three days ahead. Comput. Geosci. 2016, 90, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Barnard, P.L.; van Ormondt, M.; Erikson, L.H.; Eshleman, J.; Hapke, C.; Ruggiero, P.; Adams, P.N.; Foxgrover, A.C. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 2014, 74, 1095–1125. [Google Scholar] [CrossRef]
- Harley, M.D.; Valentini, A.; Armaroli, C.; Perini, L.; Calabrese, L.; Ciavola, P. Can an early-warning system help minimize the impacts of coastal storms? A case study of the 2012 Halloween storm, northern Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Plomaritis, T.A.; Benavente, J.; del Rio, L.; Reyes, E.; Dastis, C.; Gomez, M.; Bruno, M. Storm Early Warning System as a Last Plug-in of a Regional Operational Oceanography System: The Case of the Gulf of Cadiz. Coast. Eng. Proc. 2012, 1, 54. [Google Scholar] [CrossRef] [Green Version]
- van Dongeren, A.; Ciavola, P.; Martinez, G.; Viavattene, C.; Bogaard, T.; Ferreira, O.; Higgins, R.; McCall, R. Introduction to RISC-KIT: Resilience-increasing strategies for coasts. Coast. Eng. 2018, 134, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.A.; Sanuy, M.; Ballesteros, C.; Valdemoro, H.I. The Tordera Delta, a hotspot to storm impacts in the coast northwards of Barcelona (NW Mediterranean). Coast. Eng. 2018, 134, 148–158. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Doran, K.J.; Thompson, D.M.; Sopkin, K.L.; Plant, N.G.; Sallenger, A.H. National assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico. 2012; p. 51. Available online: https://pubs.er.usgs.gov/publication/ofr20121084 (accessed on 2 September 2021). [CrossRef] [Green Version]
- Leaman, C.K.; Harley, M.D.; Splinter, K.D.; Thran, M.C.; Kinsela, M.A.; Turner, I.L. A Storm Hazard Matrix combining coastal flooding and beach erosion. Coast. Eng. 2021, 104001. [Google Scholar] [CrossRef]
- Splinter, K.D.; Palmsten, M.L. Modeling dune response to an East Coast Low. Mar. Geol. 2012, 329, 46–57. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.P.; de Vries, J.v.T.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Holman, R.; Plant, N.; Holland, T. CBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Oceans 2013, 118, 2595–2609. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Almar, R.; Bergsma, E.W.J. Satellite optical imagery in Coastal Engineering. Coast. Eng. 2021, 167, 103919. [Google Scholar] [CrossRef]
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Harley, M.D.; Turner, I.L.; Short, A.D.; Ranasinghe, R. A reevaluation of coastal embayment rotation: The dominance of cross-shore versus alongshore sediment transport processes, Collaroy-Narrabeen Beach, southeast Australia. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Short, A.D.; Simmons, J.A.; Bracs, M.A.; Phillips, M.S.; Splinter, K.D. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Sci. Data 2016, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- O’Dea, A.; Brodie, K.L.; Hartzell, P. Continuous coastal monitoring with an automated terrestrial lidar scanner. J. Mar. Sci. Eng. 2019, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Ruessink, B.G.; Pape, L.; Turner, I.L. Daily to interannual cross-shore sandbar migration: Observations from a multiple sandbar system. Cont. Shelf Res. 2009, 29, 1663–1677. [Google Scholar] [CrossRef]
- Young, D.L.; Bak, A.S.; Forte, M.F. Initialization and Setup of the Coastal Model Test Bed: Integrated Bathymetry; US Army Engineer Research and Development Center: Vicksburg, MI, USA, 2018. [Google Scholar]
- Dean, R.G. Equilibrium Beach Profiles: Characteristics and Applications. J. Coast. Res. 1991, 7, 53–84. [Google Scholar]
- Simmons, J.A.; Harley, M.D.; Marshall, L.A.; Turner, I.L.; Splinter, K.D.; Cox, R.J. Calibrating and assessing uncertainty in coastal numerical models. Coast. Eng. 2017, 125, 28–41. [Google Scholar] [CrossRef]
- Roelvink, D.; van Dongeren, A.; McCall, R.; Hoonhout, B.; van Rooijen, A.; van Geer, P.; de Vet, L.; Nederhoff, K.; Quataert, E. XBeach Documentation: Release XBeach v1.23.5527 XBeachX FINAL; Deltares: Delft, The Netherlands, 2018. [Google Scholar]
- Roelvink, D.; Costas, S. Beach berms as an essential link between subaqueous and subaerial beach/dune profiles. Geotemas 2017, 17, 79–82. [Google Scholar]
- Ruessink, B.G. A Bayesian estimation of parameter-induced uncertainty in a nearshore alongshore current model. J. Hydroinformatics 2006, 8, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Ruessink, B.G. Calibration of nearshore process models—Application of a hybrid genetic algorithm. J. Hydroinformatics 2005, 7, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Simmons, J.A.; Harley, M.D.; Turner, I.L.; Splinter, K.D. Quantifying calibration data requirements for coastal erosion models: How many storms is enough? In Proceedings of the Coasts & Ports 2017 Conference–Cairns, Cairns, QLD, Australia, 21–23 June 2017. [Google Scholar]
- Callaghan, D.P.; Ranasinghe, R.; Roelvink, D. Probabilistic estimation of storm erosion using analytical, semi-empirical, and process based storm erosion models. Coast. Eng. 2013, 82, 64–75. [Google Scholar] [CrossRef]
- Sutherland, J.; Peet, A.H.; Soulsby, R.L. Evaluating the performance of morphological models. Coast. Eng. 2004, 51, 917–939. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Almeida, L.P.M.; Ferreira, Ó. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach. Earth Surf. Process. Landf. 2012, 37, 583–593. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Dongeren, A.V.; Doyle, J.; Hegermiller, C.A.; Hsu, T.-J.; Kalra, T.S.; Olabarrieta, M.; Penko, A.M.; Rafati, Y.; Roelvink, D. Modeling the Morphodynamics of Coastal Responses to Extreme Events: What Shape Are We In? Ann. Rev. Mar. Sci. 2021, 14, 5.1–5.36. [Google Scholar] [CrossRef]
Storm | Storm Start | Storm End | Pre-Storm Surveys (Days before Storm Start) | Post-Storm Surveys (Days after Storm End) | Storm Duration (Days) | Hsig at Storm Peak (m) | Tp at Storm Peak (s) | Wdir at Storm Peak (deg TN) | ||
---|---|---|---|---|---|---|---|---|---|---|
Topo | Bathy | Topo | ||||||||
Narrabeen | 2007 June | 7-Jun-07 | 12-Jun-07 | 24 | 1 | 5 | 6.9 | 10.8 | 135 | |
2011 June | 14-Jun-11 | 18-Jun-11 | 1 | 57 | 1 | 4 | 4.5 | 9.3 | 159 | |
2014 July | 18-Jul-14 | 21-Jul-14 | 1 | 51 | 1 | 3 | 6.0 | 12.9 | 183 | |
2014 Sept | 3-Sep-14 | 9-Sep-14 | 2 | 1 | 6 | 6.2 | 13.8 | 172 | ||
2015 April | 19-Apr-15 | 23-Apr-15 | 5 | 1 | 4 | 8.1 | 14.9 | 147 | ||
2016 June | 4-Jun-16 | 10-Jun-16 | 1 | 2 | 3 | 6 | 6.5 | 13.0 | 103 | |
2017 Aug | 18-Aug-17 | 23-Aug-17 | 3 | 1 | 5 | 5.6 | 12.9 | 166 | ||
Duck | 2016 Feb | 7-Feb-16 | 9-Feb-16 | 1 | 23 | 1 | 2 | 4.3 | 9.1 | 65 |
2016 Oct | 8-Oct-16 | 10-Oct-16 | 1 | 5 | 1 | 2 | 4.9 | 10.2 | 92 | |
2017 Sept | 18-Sep-17 | 20-Sep-17 | 1 | 12 | 1 | 2 | 4.2 | 12.7 | 80 | |
2018 Sept | 12-Sep-18 | 15-Sep-18 | 1 | 29 | 1 | 3 | 4.4 | 13.4 | 115 | |
2019 Sept | 6-Sep-19 | 7-Sep-19 | 1 | 2 | 1 | 1 | 4.4 | 7.6 | 10 |
Parameter Name | Description | Associated Study Site |
---|---|---|
facAs | Parameterizes the effect of wave asymmetry on cross-shore sediment transport, with larger facAs values simulating more onshore sediment transport [21]. | Narrabeen and Duck |
facSk | Parameterizes the effect of wave skewness on cross-shore sediment transport, with larger values of facSk also encouraging more onshore sediment transport [21]. | Narrabeen and Duck |
gamma | Breaker index that affects energy dissipation due to wave breaking. A larger (smaller) gamma value results in increased (decreased) dissipation of wave energy due to wave breaking in the surf zone, so that less (more) wave energy reaches the shoreline [21]. | Narrabeen and Duck |
bermslopefac | A parameter newly introduced into the version of XBeach utilized in this study in order to better simulate erosion at coarser-grained, less dissipative beaches [22]. | Narrabeen only |
bedfriccoef | Defines the bed friction. When using the Chezy bed friction formulation in XBeach, a larger (lower) bedfriccoef value results in less (more) bed shear stress from waves and currents. | Duck only |
Narrabeen | Duck | |||
---|---|---|---|---|
Calibration Storms | Validation Storms | Calibration Storms | Validation Storms | |
Pre-Storm Surveyed | 0.57 | 0.36 | 0.58 | |
Average | 0.26 | 0.48 | 0.25 | 0.58 |
Dean5 | 0.61 | 0.65 | 0.24 | 0.57 |
Dean10 | 0.80 | 0.72 | 0.36 | 0.71 |
Upper | 0.69 | 0.93 | 0.21 | 0.46 |
Lower | 0.66 | 0.44 | 0.74 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matheen, N.; Harley, M.D.; Turner, I.L.; Splinter, K.D.; Simmons, J.A.; Thran, M.C. Bathymetric Data Requirements for Operational Coastal Erosion Forecasting Using XBeach. J. Mar. Sci. Eng. 2021, 9, 1053. https://doi.org/10.3390/jmse9101053
Matheen N, Harley MD, Turner IL, Splinter KD, Simmons JA, Thran MC. Bathymetric Data Requirements for Operational Coastal Erosion Forecasting Using XBeach. Journal of Marine Science and Engineering. 2021; 9(10):1053. https://doi.org/10.3390/jmse9101053
Chicago/Turabian StyleMatheen, Nashwan, Mitchell D. Harley, Ian L. Turner, Kristen D. Splinter, Joshua A. Simmons, and Mandi C. Thran. 2021. "Bathymetric Data Requirements for Operational Coastal Erosion Forecasting Using XBeach" Journal of Marine Science and Engineering 9, no. 10: 1053. https://doi.org/10.3390/jmse9101053
APA StyleMatheen, N., Harley, M. D., Turner, I. L., Splinter, K. D., Simmons, J. A., & Thran, M. C. (2021). Bathymetric Data Requirements for Operational Coastal Erosion Forecasting Using XBeach. Journal of Marine Science and Engineering, 9(10), 1053. https://doi.org/10.3390/jmse9101053