Collision Risk Assessment Support System for MASS RO and VTSO Support in Multi-Ship Environment of Vessel Traffic Service Area
Abstract
:1. Introduction
2. Methodology
2.1. Collision Risk Model
2.2. Collision Risk Assessment
3. Analytic Results
3.1. Multi-Ship Environment Situation
3.2. Collision Risk Analysis Results
4. Collision Risk Assessment Support System
4.1. Collision Risk Assessment Algorithm
Algorithm 1. Collision risk assessment algorithm in multi-ship environment. |
|
4.2. System Configuration
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IMO. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS)—Comments on the Regulatory Scoping Exercise; MSC 99/5; International Maritime Organization: London, UK, 2018. [Google Scholar]
- IMO. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS)—Recommendations on Identification of Potential Amendments to Existing IMO Instruments; MSC 99/5/3; International Maritime Organization: London, UK, 2018. [Google Scholar]
- IMO. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS)—Considerations on and Proposals for the Methodology to Use Within the Framework of the Regulatory Scoping Exercise; MSC 99/5/4; International Maritime Organization: London, UK, 2018. [Google Scholar]
- IMO. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS)—Considerations on Definitions for Levels and Concepts of Autonomy; MSC 99/5/6; International Maritime Organization: London, UK, 2018. [Google Scholar]
- IMO. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS)—Japan’s Perspective on Regulatory Scoping Exercise for the Use of MASS; MSC 99/5/9; International Maritime Organization: London, UK, 2018. [Google Scholar]
- IMO. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS)—Comments on Documents MSC 99/5, MSC 99/5/2, MSC 99/5/5, MSC 99/5/8 and MSC 99/5/9; MSC 99/5/11; International Maritime Organization: London, UK, 2018. [Google Scholar]
- IMO. Interim Guidelines for MASS Trials; MSC.1/Circ.1604; International Maritime Organization: London, UK, 2019. [Google Scholar]
- IALA. IALA Guideline on Developments in Maritime Autonomous Surface Ships; ENAV27-8.1.2; International Association of Marine Aids to Navigation and Lighthouse Authorities: Paris, France, 2021. [Google Scholar]
- Chauvin, C.; Lardjane, S.; Morel, G.; Clostermann, J.-P.; Langard, B. Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accid. Anal. Prev. 2013, 59, 26–37. [Google Scholar] [CrossRef]
- Gale, H.; Patraiko, D. Improving navigational safety. Seaways 2007, 4–8. [Google Scholar]
- Grech, M.; Horberry, T.; Smith, A. Human error in maritime operations: Analyses of accident reports using the leximancer tool. In Proceedings of the 4th Annual Meeting of the Human Factors and Ergonomics Society, Baltimore, MD, USA, 30 September–4 October 2002. [Google Scholar]
- Hetherington, C.; Flin, R.; Mearns, K. Safety in shipping: The human element. J. Saf. Res. 2006, 37, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Rothblum, A. Human error and maritime safety. In Proceedings of the Maritime Human Factors Conference, Linthicum, MD, USA, 13–14 March 2000. [Google Scholar]
- Wagenaar, W.A.; Groeneweg, J. Accidents at sea: Multiple causes and impossible consequences. Int. J. Man–Mach. Stud. 1987, 27, 587–598. [Google Scholar] [CrossRef]
- Fuji, J.; Tanaka, K. Traffic capacity. J. Navig. 1971, 24, 543–552. [Google Scholar] [CrossRef]
- Coldwell, T.G. Marine traffic behaviour in restricted waters. J. Navig. 1983, 36, 431–444. [Google Scholar] [CrossRef]
- Goodwin, E.M. A statistical study of ship domains. J. Navig. 1975, 28, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.G.; Jensen, T.K.; Lehn-Schiøler, T.; Melchild, K.; Rasmussen, F.M.; Ennemark, F. Empirical ship domain based on AIS data. J. Navig. 2013, 66, 931–940. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chin, H.C. An empirically-calibrated ship domain as a safety criterion for navigation in confined waters. J. Navig. 2016, 69, 257–276. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.V.; Dove, M.J.; Stockel, C.T. A computer simulation of marine traffic using domains and arenas. J. Navig. 1980, 33, 215–222. [Google Scholar] [CrossRef]
- Davis, P.V.; Dove, M.J.; Stockel, C.T. A computer simulation of multi-ship encounters. J. Navig. 1982, 35, 347–352. [Google Scholar] [CrossRef]
- Dinh, G.H.; Im, N. The combination of analytical and statistical method to define polygonal ship domain and reflect human experiences in estimating dangerous area. Int. J. e-Navig. Mar. Econ. 2016, 4, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, F.; Li, Z.; Wang, M.; Liu, R.W. Dynamic ship domain models for capacity analysis of restricted water channels. J. Navig. 2016, 69, 481–503. [Google Scholar] [CrossRef] [Green Version]
- Pietrzykowski, Z. Ship’s fuzzy domain—A criterion for navigational safety in narrow fairways. J. Navig. 2008, 61, 499–514. [Google Scholar] [CrossRef]
- Pietrzykowski, Z.; Uriasz, J. The ship domain—A criterion of navigational safety assessment in an open sea area. J. Navig. 2009, 62, 93–108. [Google Scholar] [CrossRef]
- Wang, N.; Meng, X.; Xu, Q.; Wang, Z. An intelligent spatial collision risk based on the quaternion ship domain. J. Navig. 2010, 63, 733–749. [Google Scholar] [CrossRef]
- Wang, N. A novel analytical framework for dynamic quaternion ship domains. J. Navig. 2013, 66, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Xu, H.; Liu, J. Domain and its model based on neural networks. J. Navig. 2001, 54, 97–103. [Google Scholar] [CrossRef]
- Westrenen, F.; Baldauf, M. Improving conflicts detection in maritime traffic: Case studies on the effect of traffic complexity on ship collisions. Proc. IMechE Part M J. Eng. Marit. Environ. 2020, 234, 209–222. [Google Scholar] [CrossRef]
- Yoo, Y.; Lee, J.-S. Evaluation of ship collision risk assessments using environmental stress and collision risk models. Ocean Eng. 2019, 191, 1–13. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Hanninen, M.; Storgard, J.; Luoma, E.; Mantyniemi, S.; Kuikka, S. A Bayesian Network for Assessing the Collision Induced Risk of an Oil Spill in the Gulf of Finland. Environ. Sci. Technol. 2015, 49, 5301–5309. [Google Scholar] [CrossRef] [Green Version]
- Goerlandt, F.; Montewka, J.; Kuzmin, V.; Kujala, P. A risk-informed ship collision alert system: Framework and application. Saf. Sci. 2015, 77, 182–204. [Google Scholar] [CrossRef] [Green Version]
- Chin, H.-C.; Debnath, A.K. Modeling perceived collision risk in port water navigation. Saf. Sci. 2009, 47, 1410–1416. [Google Scholar] [CrossRef] [Green Version]
- Goerlandt, F.; Kujala, P. On the reliability and validity of ship–ship collision risk analysis in light of different perspectives on risk. Saf. Sci. 2014, 62, 348–365. [Google Scholar] [CrossRef]
- Goerlandt, F.; Montewka, J. A Framework for Risk Analysis of Maritime Transportation Sytems: A Case Study for Oil Spill from Tankers in a Ship-Ship Collision. Saf. Sci. 2015, 76, 42–66. [Google Scholar] [CrossRef]
- Goerlandt, F.; Montewka, J. Maritime Transportation Risk Analysis: Review and Analysis in Light of Some Foundational Issues. Reliab. Eng. Syst. Saf. 2015, 138, 115–134. [Google Scholar] [CrossRef]
- Patraiko, D.; Wake, P.; Weintrit, A. e-Navigation and the human element. TransNav–Int. J. Mar. Navig. Saf. Sea Transp. 2010, 4, 11–16. [Google Scholar]
- Hilgert, H.; Baldauf, M. A common risk model for the assessment of encounter situations on board ships. Dtsch. Hydrogr. Z. 1997, 49, 531–542. [Google Scholar] [CrossRef]
- Baldauf, M.; Benedict, K.; Fischer, S.; Motz, F.; Schroder-Hinrichs, J.-U. Collision avoidance systems in air and maritime traffic. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2011, 225, 333–343. [Google Scholar] [CrossRef]
- Bukhari, A.C.; Tusseyeva, I.; Lee, B.-G.; Kim, Y.-G. An intelligent real-time multi-vessel collision risk assessment system from VTS view point based on fuzzy inference system. Expert Syst. Appl. 2013, 40, 1220–1230. [Google Scholar] [CrossRef]
- Kao, S.-L.; Lee, K.-T.; Chang, K.-Y.; Ko, M.-D. A fuzzy logic method for collision avoidance in Vessel Traffic Service. J. Navig. 2007, 60, 17–31. [Google Scholar] [CrossRef]
- Ren, Y.; Mou, J.; Yan, Q.; Zhang, F. Study on assessing dynamic risk of ship collision. In Multimodal Approach to Sustained Transportation System Development: Information, Technology, Implementation; Presented at the International Conference on Transportation Information and Safety; ASCE: Wuhan, China, 2011; pp. 2751–2757. [Google Scholar]
- Mou, J.M.; van der Tak, C.; Ligteringen, H. Study on collision avoidance in busy waterways by using AIS data. Ocean Eng. 2010, 37, 483–490. [Google Scholar] [CrossRef]
- Baldauf, M.; Fischer, S. Merging conventionally navigating ships and MASS—Merging VTS, FOC and SCC? TransNav 2019, 13, 495–501. [Google Scholar] [CrossRef]
- Cockcroft, A.N.; Lameijer, J.N.F. A Guide to the Collision Avoidance Rules: International Regulations for Preventing Collisions at Sea, 7th ed.; Elsevier: Croydon, UK, 2011; p. 108. [Google Scholar]
- IMO. International Regulations for Preventing Collisions at Sea; International Maritime Organization: London, UK, 1972. [Google Scholar]
- Lee, J.-S.; Song, C.-U. The situation awareness analysis of VTSOs in the close quarters situation. J. Navig. Port Res. 2018, 42, 25–30. [Google Scholar]
- KCG. Vessel Traffic Service System Configuration. Korea Coast Guard. Available online: http://www.kcg.go.kr/kcg/si/sub/info.do?page=2843&mi=2843/ (accessed on 12 September 2021).
- KCG. Guide to Vessel Traffic Service 2020. Korea Coast Guard. Available online: http://www.kcg.go.kr/kcg/na/ntt/selectNttInfo.do?nttSn=23295/ (accessed on 12 September 2021).
- Inoue, K. Evaluation method of ship-handling difficulty for navigation in restricted and congested waterways. J. Navig. 2000, 53, 167–180. [Google Scholar] [CrossRef]
Ship No. | Ship Type | Dimensions [m] | ||
---|---|---|---|---|
Length | Beam | Draft | ||
ship-1 | container | 162 | 26 | 5.9 |
ship-2 | container | 132 | 19 | 6.5 |
ship-3 | tug | 23 | 6.5 | 2 |
ship-4 | container | 137 | 25 | 7.9 |
ship-5 | passenger ship | 162 | 25 | 5.6 |
ship-6 | container | 142 | 20 | 7.3 |
Scenario No. | Target Ships (ship-i, ship-j) | Initial Speed [kts] | End Speed [kts] | Initial Course [°] | Time [hh:mm:ss] |
---|---|---|---|---|---|
no.1 no.2 no.3 no.4 no.5 | ship-1, ship-2 ship-1, ship-3 ship-1, ship-4 ship-1, ship-5 ship-1, ship-6 | 11, 14 11, 4 11, 14 11, 15 11, 11 | 8, 11 8, 4 8, 15 8, 10 8, 9 | 324, 322 324, 209 324, 116 324, 311 324, 318 | 05:33:05 – 05:53:35 |
no.6 no.7 no.8 no.9 | ship-2, ship-3 ship-2, ship-4 ship-2, ship-5 ship-2, ship-6 | 14, 4 14, 14 14, 15 14, 11 | 11, 4 11, 15 11, 10 11, 9 | 322, 209 322, 116 322, 311 322, 318 | |
no.10 no.11 no.12 | ship-3, ship-4 ship-3, ship-5 ship-3, ship-6 | 4, 14 4, 15 4, 11 | 4, 15 4, 10 4, 9 | 209, 116 209, 311 209, 318 | |
no.13 no.14 | ship-4, ship-5 ship-4, ship-6 | 14, 15 14, 11 | 15, 10 15, 9 | 116, 311 116, 318 | |
no.15 | ship-5, ship-6 | 15, 11 | 10, 9 | 311, 318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, Y.; Lee, J.-S. Collision Risk Assessment Support System for MASS RO and VTSO Support in Multi-Ship Environment of Vessel Traffic Service Area. J. Mar. Sci. Eng. 2021, 9, 1143. https://doi.org/10.3390/jmse9101143
Yoo Y, Lee J-S. Collision Risk Assessment Support System for MASS RO and VTSO Support in Multi-Ship Environment of Vessel Traffic Service Area. Journal of Marine Science and Engineering. 2021; 9(10):1143. https://doi.org/10.3390/jmse9101143
Chicago/Turabian StyleYoo, Yunja, and Jin-Suk Lee. 2021. "Collision Risk Assessment Support System for MASS RO and VTSO Support in Multi-Ship Environment of Vessel Traffic Service Area" Journal of Marine Science and Engineering 9, no. 10: 1143. https://doi.org/10.3390/jmse9101143
APA StyleYoo, Y., & Lee, J. -S. (2021). Collision Risk Assessment Support System for MASS RO and VTSO Support in Multi-Ship Environment of Vessel Traffic Service Area. Journal of Marine Science and Engineering, 9(10), 1143. https://doi.org/10.3390/jmse9101143