Influence of Asphaltenes on the Low-Sulphur Residual Marine Fuels’ Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SARA Analysis of Vacuum and Visbreaking Residues
2.3. XRF Analysis of Petroleum Asphaltene Composition
2.4. XRD Analysis of the Structure of Petroleum Asphaltenes
2.5. The Analysis of Stability of Residual Marine Fuels Using Ternary Phase Diagrams
2.6. The Effect of Adding VacRes and VisRes Asphaltenes to the Commercial Residual Marine Fuel on the TSA Index
3. Results and Discussion
3.1. Composition and Morphology of Petroleum Asphaltenes
3.2. Petroleum Asphaltenes Structure
3.3. Stability of the Residual Marine Fuel Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spezzano, P. Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Sci. Total Environ. 2021, 754, 142345. [Google Scholar] [CrossRef]
- Buslaev, G.; Morenov, V.; Konyaev, Y.; Kraslawski, A. Reduction of carbon footprint of the production and field transport of high-viscosity oils in the Arctic region. Chem. Eng. Process.-Process Intensif. 2020, 159, 108189. [Google Scholar] [CrossRef]
- El-Houjeiri, H.; Monfort, J.C.; Bouchard, J.; Przesmitzki, S. Life Cycle Assessment of Greenhouse Gas Emissions from Marine Fuels: A Case Study of Saudi Crude Oil versus Natural Gas in Different Global Regions. J. Ind. Ecol. 2019, 23, 374–388. [Google Scholar] [CrossRef]
- Thomson, H.; Corbett, J.J.; Winebrake, J.J. Natural gas as a marine fuel. Energy Policy 2015, 87, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Raitt, D. LNG as marine fuel—Where technology meets logistics. APPEA J. 2018, 58, 593. [Google Scholar] [CrossRef]
- Herdzik, J. Consequences of using LNG as a marine fuel. J. KONES 2013, 20, 159–166. [Google Scholar]
- Litvinenko, V. The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas. Resources 2020, 9, 59. [Google Scholar] [CrossRef]
- Litvinenko, V.S.; Dvoynikov, M.V.; Trushko, V.L. Elaboration of a conceptual solution for the development of the Arctic shelf from seasonally flooded coastal areas. Int. J. Min. Sci. Technol. 2021, in press. [Google Scholar] [CrossRef]
- Filatova, I.; Nikolaichuk, L.; Zakaev, D.; Ilin, I. Public-Private Partnership as a Tool of Sustainable Development in the Oil-Refining Sector: Russian Case. Sustainability 2021, 13, 5153. [Google Scholar] [CrossRef]
- Aramkitphotha, S.; Tanatavikorn, H.; Yenyuak, C.; Vitidsant, T. Low sulfur fuel oil from blends of microalgae pyrolysis oil and used lubricating oil: Properties and economic evaluation. Sustain. Energy Technol. Assess. 2019, 31, 339–346. [Google Scholar] [CrossRef]
- Gulyaeva, L.A.; Lobashova, M.M.; Mitusova, T.N.; Shmel’kova, O.I.; Khavkin, V.A.; Nikul’shin, P.A. Production of Low-Sulfur Marine Fuel. Chem. Technol. Fuels Oils 2020, 55, 704–711. [Google Scholar] [CrossRef]
- Stern, D.L.; Mauro, S.R.D.; Roccaro, A.; Bessonette, P.W. ExxonMobil Research and Engineering Co. Fuel Compositions and Methods for Making Same. US Patent 8999011 B2, 28 March 2012. [Google Scholar]
- Droubi, D.F.; Branch, M.A.; Delaney-Kinsella, C.; Lipinsky, D.T.; Kraus, L.S.; Brumfield, T.L.; Bru, A.; Steernberg, K.; Tardif, P.; Boudreaux, S. Shell Internationale Research Maatschappij BV. Fuel Compositions. US Patent 8,987,537 B1, 23 March 2015. [Google Scholar]
- Buchanan, K.D. Sunoco Partners Marketing & Terminals L.P. Low Sulfur Marine Fuel. US Patent 20150353851A1, 10 December 2015. [Google Scholar]
- Wohaibi, M.; Pruitt, T.F. Mawetal LLC. Environment-Friendly Marine Fuel. US Patent 20190093026A1, 18 October 2016. [Google Scholar]
- Zhang, Y.; Siskin, M.; Gray, M.R.; Walters, C.C.; Rodgers, R.P. Mechanisms of Asphaltene Aggregation: Puzzles and a New Hypothesis. Energy Fuels 2020, 34, 9094–9107. [Google Scholar] [CrossRef]
- Speight, J.G. Petroleum asphaltenes—Part 2: The effect of asphaltenes and resin constituents on recovery and refining processes. Oil Gas Sci. Technol. 2004, 59, 479–488. [Google Scholar] [CrossRef]
- Speight, J.G. Refinery Feedstocks; CRC Press: Boca Raton, FL, USA, 2021; 356p. [Google Scholar]
- Sultanbekov, R.; Nazarova, M. The influence of total sediment of petroleum products on the corrosiveness of the metal of the tanks during storage. E3S Web Conf. 2019, 121, 01015. [Google Scholar] [CrossRef]
- Sultanbekov, R.; Islamov, S.; Mardashov, D.; Beloglazov, I.; Hemmingsen, T. Research of the Influence of Marine Residual Fuel Composition on Sedimentation Due to Incompatibility. J. Mar. Sci. Eng. 2021, 9, 1067. [Google Scholar] [CrossRef]
- Struchkov, I.A.; Rogachev, M.K.; Kalinin, E.S.; Roschin, P.V. Laboratory investigation of asphaltene-induced formation damage. J. Pet. Explor. Prod. Technol. 2019, 9, 1443–1455. [Google Scholar] [CrossRef] [Green Version]
- Golubev, I.; Golubev, A.; Laptev, A. Practice of using the magnetic treatment devices to intensify the processes of primary oil treating. J. Min. Inst. 2020, 245, 554–560. [Google Scholar] [CrossRef]
- Khormali, A.; Sharifov, A.R.; Torba, D.I. Experimental and modeling study of asphaltene adsorption onto the reservoir rocks. Pet. Sci. Technol. 2018, 36, 1482–1489. [Google Scholar] [CrossRef]
- Rogachev, M.; Aleksandrov, A. Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during the production of highlyparaffinic oil by electric submersible pumps from multiformation deposits. J. Min. Inst. 2021, 250, 596–605. [Google Scholar] [CrossRef]
- Hosseini-Dastgerdi, Z.; Tabatabaei-Nejad, S.A.R.; Khodapanah, E.; Sahrae, E. A comprehensive study on mechanism of formation and techniques to diagnose asphaltene structure; molecular and aggregates: A review. Asia-Pac. J. Chem. Eng. 2014, 17, 743–753. [Google Scholar] [CrossRef]
- Anchita, J. HYDRO-IMP technology for heavy oil refining. J. Min. Inst. 2017, 224, 229–234. [Google Scholar]
- Ilyina, M.G.; Khamitov, E.M.; Galiakhmetov, R.N.; Mustafin, I.A.; Akhmetov, A.F.; Shayakhmetova, R.K.; Mustafin, A.G. Light gasoil of catalytic cracking: A quantitative description of the physical properties by joint use of chromato-mass-spectrometry and molecular dynamics. J. Chin. Chem. Soc. 2020, 67, 33–40. [Google Scholar] [CrossRef]
- Badikova, A.D.; Muhamadeev, R.U.; Shiryaeva, R.N.; Mustafin, A.G.; Rullo, A.V.; Ibragimov, I.G. Spectral methods of analysis capabilities for investigation of the composition of oil sludges. SOCAR Proc. 2019, 4, 32–38. [Google Scholar] [CrossRef]
- Speight, J.G. Heavy Oil Recovery and Upgrading; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2019; 821p. [Google Scholar]
- Luo, P.; Wang, X.; Gu, Y. Characterization of asphaltenes precipitated with three light alkanes under different experimental conditions. Fluid Phase Equilib. 2010, 291, 103–110. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Rana, M.S.; Tanoli, N.J.; Lababidi, H.M.; Al-Najdi, N.A. Changes in asphaltene surface topography with thermal treatment. Arab. J. Chem. 2020, 13, 5377–5389. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Hauser, A.; Rana, M.S.; Lababidi, H.M.; Behbehani, M. Changes in asphaltene structure during thermal cracking of residual oils: XRD study. Fuel 2015, 150, 558–564. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Ali, M.F.; Shirokoff, J. Use of X-ray diffraction in assessing the aging pattern of asphalt fractions. Fuel 2002, 81, 51–58. [Google Scholar] [CrossRef]
- Ancheyta, J.; Trejo, F.; Rana, M.S. Asphaltenes Chemical Transformation during Hydro Processing of Heavy Oils; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009; 441p. [Google Scholar]
- Yen, T.F.; Erdman, J.G.; Pollack, S.S. Investigation of the Structure of Petroleum Asphaltenes by X-ray Diffraction. Anal. Chem. 1961, 33, 1587–1594. [Google Scholar] [CrossRef]
- Bouhadda, Y.; Bormann, D.; Sheu, E.; Bendedouch, D.; Krallafa, A.; Daaou, M. Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction. Fuel 2007, 86, 1855–1864. [Google Scholar] [CrossRef]
- Jameel, A.G.; Alkhateeb, A.; Telalović, S.; Elbaz, A.M.; Roberts, W.L.; Sarathy, S.M. Environmental Challenges and Opportunities in Marine Engine Heavy Fuel Oil Combustion. In Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018) 2019; Springer: Singapore, 2019; pp. 1047–1055. [Google Scholar]
- Chesnokov, V.V.; Chichkan, A.S.; Parmon, V.N. Effect of Nickel-Containing Catalyst on the Tar Coking Process. Catal. Ind. 2021, 13, 143–149. [Google Scholar] [CrossRef]
- Shaltout, A.A.; Gomma, M.M.; Ali-Bik, M.W. Utilization of standardless analysis algorithms using WDXRF and XRD for Egyptian iron ore identification. X-ray Spectrom. 2012, 41, 355–362. [Google Scholar] [CrossRef]
- SciPy.org. 2020. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html (accessed on 5 November 2021).
- Bragg, W.L. The Structure of Some Crystals as Indicated by Their Diffraction of X-rays. Proc. R. Soc. A Math. Phys. Eng. Sci. 1913, 89, 248–277. [Google Scholar]
- Wulff, G. Über die Kristallröntgenogramme. Phys. Zeitschrift. 1913, 14, 217–220. [Google Scholar]
- Shirokoff, J.W.; Siddiqui, M.N.; Ali, M.F. Characterization of the Structure of Saudi Crude Asphaltenes by X-ray Diffraction. Energy Fuels 1997, 11, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch; Springer: Berlin/Heidelberg, Germany, 1912; pp. 387–409. [Google Scholar]
- Warren, B.E. X-ray diffraction in random layer lattices. Phys. Rev. 1941, 59, 693–698. [Google Scholar] [CrossRef]
- Feret, F.R. Determination of the crystallinity of calcined and graphitic cokes by X-ray diffraction. Analyst 1998, 123, 595–600. [Google Scholar] [CrossRef]
- Gibbs, J.W. The Scientific Papers of J. Willard Gibbs. Nature 1907, 75, 361–362. [Google Scholar]
- Kurnakov, N.S. Introduction to Physicochemical Analysis. Izv. Akad. Nauk SSSR. 1940. [Google Scholar]
- Andersen, S.I.; Jensen, J.O.; Speight, J.G. X-ray Diffraction of Subfractions of Petroleum Asphaltenes. Energy Fuels 2005, 19, 2371–2377. [Google Scholar] [CrossRef]
Parameter | VacRes | VisRes | ULSD | LCGO |
---|---|---|---|---|
Density at 15 °C, kg/m3 | 990.2 | 961.2 | 855.0 | 956.0 |
Viscosity, mm2/s at 40 °C | - | - | 2.790 | 2.400 |
Viscosity, mm2/s at 50 °C | 19,516.7 | 1743.9 | - | - |
Sulphur, % | 1.6020 | 0.9458 | 0.0007 | 0.0766 |
SARA analysis, wt%: | ||||
saturates | 14.90 | 20.35 | 96.08 | 24.77 |
aromatic | 48.10 | 42.65 | 3.92 | 75.23 |
resins | 21.00 | 10.40 | - | - |
asphaltenes, including | 16.00 | 26.60 | - | - |
- carboids (TI-QI) | 1.1 | 1.6 | - | - |
- carbenes (TI-QS) | 0.5 | 0.8 | - | - |
Asphaltenes | S | V | Fe | Ni | Ca | Si | Al | Zn | Cl | K |
---|---|---|---|---|---|---|---|---|---|---|
VacRes | 4.74 | 0.10833 | 0.04514 | 0.03611 | 0.00812 | 0.00903 | 0.00271 | 0.00181 | 0.01625 | - |
VisRes | 3.58 | 0.09993 | 0.02734 | 0.02828 | 0.01131 | 0.01508 | 0.00471 | 0.00189 | - | 0.00283 |
γ-band | Graphene or (002) Band | (100) Band | ||||||
---|---|---|---|---|---|---|---|---|
Estimate | VacRes | VisRes | Estimate | VacRes | VisRes | Estimate | VacRes | VisRes |
2θ, ° | 18.1802 | 18.7465 | 2θ, ° | 24.9476 | 25.0246 | 2θ, ° | 40.0377 | 41.0000 |
FWHM, ° | 13.4967 | 13.8509 | FWHM, ° | 3.0142 | 3.8752 | FWHM, ° | 22.5059 | 24.0985 |
dγ, Å | 6.0946 | 5.9121 | d002, Å | 3.5663 | 3.8752 | d100, Å | 2.2502 | 2.1996 |
fa | 0.04 | 0.10 | Lc, Å | 26.7221 | 20.7793 | La, Å | 7.6808 | 7.1955 |
M | 8 | 7 | NOar | 2.9 | 2.7 |
Parameter | RMG 380 |
---|---|
Density at 15 °C, kg/m3 | 956.0 |
Viscosity, mm2/s at 50 °C | 321.5 |
Flash point, °C | 98 |
Pour point, °C | 19 |
TSA, %wt. | 0.0268 |
Asphaltenes Content added to RMG 380, %wt. | TSA RMG 380 + Asphaltenes, %wt. | |
---|---|---|
VacRes Asphaltenes | VisRes Asphaltenes | |
0.0 | 0.0268 | |
2.5 | 0.0320 | 0.0984 |
5.0 | 0.1278 | 0.2653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smyshlyaeva, K.I.; Rudko, V.A.; Povarov, V.G.; Shaidulina, A.A.; Efimov, I.; Gabdulkhakov, R.R.; Pyagay, I.N.; Speight, J.G. Influence of Asphaltenes on the Low-Sulphur Residual Marine Fuels’ Stability. J. Mar. Sci. Eng. 2021, 9, 1235. https://doi.org/10.3390/jmse9111235
Smyshlyaeva KI, Rudko VA, Povarov VG, Shaidulina AA, Efimov I, Gabdulkhakov RR, Pyagay IN, Speight JG. Influence of Asphaltenes on the Low-Sulphur Residual Marine Fuels’ Stability. Journal of Marine Science and Engineering. 2021; 9(11):1235. https://doi.org/10.3390/jmse9111235
Chicago/Turabian StyleSmyshlyaeva, Ksenia I., Viacheslav A. Rudko, Vladimir G. Povarov, Alina A. Shaidulina, Ignaty Efimov, Renat R. Gabdulkhakov, Igor N. Pyagay, and James G. Speight. 2021. "Influence of Asphaltenes on the Low-Sulphur Residual Marine Fuels’ Stability" Journal of Marine Science and Engineering 9, no. 11: 1235. https://doi.org/10.3390/jmse9111235
APA StyleSmyshlyaeva, K. I., Rudko, V. A., Povarov, V. G., Shaidulina, A. A., Efimov, I., Gabdulkhakov, R. R., Pyagay, I. N., & Speight, J. G. (2021). Influence of Asphaltenes on the Low-Sulphur Residual Marine Fuels’ Stability. Journal of Marine Science and Engineering, 9(11), 1235. https://doi.org/10.3390/jmse9111235