Satellite-Derived Topography and Morphological Evolution around Authie Macrotidal Estuary (France)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Survey Data
2.3. Imagery
2.4. Satellite Derived Topography
2.4.1. Berck Shoreline Site
2.4.2. Authie Bay Site
2.5. Timelapses
2.6. Monitoring of the Authie Meanders
3. Results
3.1. Berck Shoreline Site
3.2. Authie Bay Site
3.2.1. Satellite Derived Topography
3.2.2. Morphological Changes
4. Discussion
4.1. Relevance of Satellite-Derived Topography Models
4.2. Interpretation of Morphological Changes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DEM | Digital Elevation Model |
SDB | Satellite Derived Bathymetry |
SDT | Satellite Derived Topography |
References
- Green, M.; Macdonald, I. Processes driving estuary infilling by marine sands on an embayed coast. Mar. Geol. 2001, 178. [Google Scholar] [CrossRef]
- Tessier, B.; Billeaud, I.; Sorrel, P.; Delsinne, N.; Lesueur, P. Infilling stratigraphy of macrotidal tide-dominated estuaries. Controlling mechanisms: Sea-level fluctuations, bedrock morphology, sediment supply and climate changes (The examples of the Seine estuary and the Mont-Saint-Michel Bay, English Channel, NW France). Sediment. Geol. 2012, 279, 62–73. [Google Scholar] [CrossRef]
- Dronkers, J. Dynamics of Coastal Systems, 2nd ed.; World Scientific: Singapore, 2016. [Google Scholar] [CrossRef]
- Michel, C.; Bot, S.L.; Druine, F.; Costa, S.; Levoy, F.; Dubrulle-Brunaud, C.; Lafite, R. Stages of sedimentary infilling in a hypertidal bay using a combination of sedimentological, morphological and dynamic criteria (Bay of Somme, France). J. Maps 2017, 13, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Leuven, J.; Pierik, H.J.; van der Vegt, M.; Bouma, T.; Kleinhans, M. Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide. Nat. Clim. Chang. 2019, 9, 986–992. [Google Scholar] [CrossRef]
- Mason, D.; Gurney, C.; Kennett, M. Beach topography mapping—A comparison of techniques. J. Coast. Conserv. 2000, 6, 113–124. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Heygster, G.; Lubac, B.; Raucoules, D.; Almeida, L.P.; Bergsma, E.W.J.; Capo, S.; et al. Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review. Remote Sens. 2019, 11, 2212. [Google Scholar] [CrossRef] [Green Version]
- Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Int. J. Remote Sens. 1985, 6, 115–125. [Google Scholar] [CrossRef]
- Gao, J. Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Prog. Phys. Geogr. Earth Environ. 2009, 33, 103–116. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.; Meredith, A. Preliminary Assessment of Turbidity and Chlorophyll Impact on Bathymetry Derived from Sentinel-2A and Sentinel-3A Satellites in South Florida. Remote Sens. 2019, 11, 645. [Google Scholar] [CrossRef] [Green Version]
- Caballero, I.; Stumpf, R.P. Towards Routine Mapping of Shallow Bathymetry in Environments with Variable Turbidity: Contribution of Sentinel-2A/B Satellites Mission. Remote Sens. 2020, 12, 451. [Google Scholar] [CrossRef] [Green Version]
- Mason, D.C.; Davenport, I.J.; Robinson, G.J.; Flather, R.A.; McCartney, B.S. Construction of an inter-tidal digital elevation model by the ‘Water-Line’ Method. Geophys. Res. Lett. 1995, 22, 3187–3190. [Google Scholar] [CrossRef]
- Mason, D.C.; Davenport, I.J.; Flather, R. Interpolation of an intertidal digital elevation model from heighted shorelines: A case study in the Western Wash. Estuar. Coast. Shelf Sci. 1997, 45, 599–612. [Google Scholar] [CrossRef]
- Li, Z.; Heygster, G.; Notholt, J. Intertidal Topographic Maps and Morphological Changes in the German Wadden Sea between 1996–1999 and 2006–2009 from the Waterline Method and SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3210–3224. [Google Scholar] [CrossRef]
- Kang, Y.; Lv, W.; He, J.; Ding, X. Remote Sensing of Time-Varying Tidal Flat Topography, Jiangsu Coast, China, Based on the Waterline Method and an Artificial Neural Network Model. Appl. Sci. 2020, 10, 3645. [Google Scholar] [CrossRef]
- Cham, D.; Son, N.; Nguyen, M.; Tien Thanh, N.; Dung, T. An Analysis of Shoreline Changes Using Combined Multitemporal Remote Sensing and Digital Evaluation Model. Civ. Eng. J. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Nazeer, M.; Waqas, M.; Shahzad, M.I.; Zia, I.; Wu, W. Coastline Vulnerability Assessment through Landsat and Cubesats in a Coastal Mega City. Remote Sens. 2020, 12, 749. [Google Scholar] [CrossRef] [Green Version]
- Capo, S.; Lubac, B.; Marieu, V.; Robinet, A.; Bru, D.; Bonneton, P. Assessment of the decadal morphodynamic evolution of a mixed energy inlet using ocean color remote sensing. Ocean Dyn. 2014, 64, 1517–1530. [Google Scholar] [CrossRef]
- Deloffre, J.; Verney, R.; Lafite, R.; Lesueur, P.; Lesourd, S.; Cundy, A. Sedimentation on intertidal mudflats of macrotidal estuaries: Sedimentation, rhythms and their preservation. Mar. Geol. 2007, 241, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Hesp, P.; Ruz, M.H.; Hequette, A.; Marin, D.; da Silva, G.M. Geomorphology and dynamics of a traveling cuspate foreland, Authie estuary, France. Geomorphology 2015, 254, 104–120. [Google Scholar] [CrossRef]
- Marion, C.; Anthony, E.; Alain, T. Short-term (<2 yrs) estuarine mudflat and saltmarsh sedimentation: High-resolution data from ultrasonic altimetery, rod surface-elevation table, and filter traps. Estuar. Coast. Shelf Sci. 2009, 83, 475–484. [Google Scholar] [CrossRef]
- Dobroniak, C.; Anthony, E. Short-term Morphological Expression of Dune Sand Recycling on a Macrotidal, Wave-Exposed Estuarine Shoreline. J. Coast. Res. 2002, 36, 240–248. [Google Scholar] [CrossRef]
- Anthony, E.; Dobroniak, C. Erosion and recycling of aeolian dunes in a rapidly infilling macrotidal estuary: The Authie, Picardy, northern France. Geol. Soc. Lond. Spec. Publ. 2000, 175, 109–121. [Google Scholar] [CrossRef]
- Dobroniak, C. Morphological evolution and management proposals in the Authie Estuary, northern France. Proc. Dunes Estuaries 2005, 2205, 537–545. [Google Scholar]
- Verpoorter, C.; Menuge, B.; Launeau, P.; Méléder, V.; Héquette, A.; Cartier, A.; Sipka, V. Synergy between Hyperspectral (HYSPEX), Multispectral (SPOT 6/7, Sentinel-2) Remotely Sensed Data and LiDAR Data for Mapping the Authie Estuary (France). Estuaries and Coastal Zones in Times of Global Change; Nguyen, K.D., Guillou, S., Gourbesville, P., Thiébot, J., Eds.; Springer: Singapore, 2020; pp. 769–788. [Google Scholar]
- Sentinel Hub EO Browser. Available online: https://apps.sentinel-hub.com/eo-browser (accessed on 30 March 2021).
- Mason, D.; Scott, T.; Dance, S. Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007. Estuar. Coast. Shelf Sci. 2010, 87, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Ding, X.; Xu, F.; Zhang, C.; Ge, X. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method. Estuar. Coast. Shelf Sci. 2017, 190, 11–22. [Google Scholar] [CrossRef]
- Xu, Z.; Kim, D.-j.; Kim, S.H.; Cho, Y.K.; Lee, S.G. Estimation of seasonal topographic variation in tidal flats using waterline method: A case study in Gomso and Hampyeong Bay, South Korea. Estuar. Coast. Shelf Sci. 2016, 183, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Eugenio-Gonzalez, F.; Marcello, J.; Abasolo, J.M. High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments Using Multispectral Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3539–3549. [Google Scholar] [CrossRef]
- Evagorou, E.; Mettas, C.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, D. Bathymetric maps from multi-temporal analysis of Sentinel-2 data: The case study of Limassol, Cyprus. Adv. Geosci. 2019, 45, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, A.; Horta, J.; Loureiro, C.; Ferreira, Ó. Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters. Remote Sens. Environ. 2015, 159, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Carnero, N.; Ojeda-Zujar, J.; Rodríguez-Pérez, D.; Marquez-Perez, J. Assessment of different models for bathymetry calculation using SPOT multispectral images in a high-turbidity area: The mouth of the Guadiana Estuary. Int. J. Remote Sens. 2014, 35, 493–514. [Google Scholar] [CrossRef]
- Nolet, C.; Poortinga, A.; Roosjen, P.; Bartholomeus, H.; Ruessink, G. Measuring and Modeling the Effect of Surface Moisture on the Spectral Reflectance of Coastal Beach Sand. PLoS ONE 2014, 9, e112151. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Kim, C.; Lee, Y.K.; Won, J.S.; Chun, S.S.; Lee, S. Detecting the intertidal morphologic change using satellite data. Estuar. Coast. Shelf Sci. 2008, 78, 623–632. [Google Scholar] [CrossRef]
- Zhao, B.; Guo, H.; Yan, Y.; Wang, Q.; Li, B. A simple waterline approach for tidelands using multi-temporal satellite images: A case study in the Yangtze Delta. Estuar. Coast. Shelf Sci. 2008, 77, 134–142. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Cheng, L.; Li, F.; Chen, K. Topographic Mapping of Offshore Sandbank Tidal Flats Using the Waterline Detection Method: A Case Study on the Dongsha Sandbank of Jiangsu Radial Tidal Sand Ridges, China. Mar. Geod. 2012, 35, 362–378. [Google Scholar] [CrossRef]
- Tong, S.S.; Deroin, J.P.; Pham Thi, L. An optimal waterline approach for studying tidal flat morphological changes using remote sensing data: A case of the northern coast of Vietnam. Estuar. Coast. Shelf Sci. 2020, 236, 106613. [Google Scholar] [CrossRef]
- Crapoulet, A. Evolution du trait de côte, Bilans Sédimentaires et Évaluation des Zones à Risques sur le Littoral du Nord-Pas-de-Calais: Analyse Multi-échelles par LiDAR aéroporté. Ph.D. Thesis, Université du Littoral Côte d’Opale, Villeneuve d’Ascq, France, 2015. [Google Scholar]
- Pethick, J. Estuaries and Wetlands: Function and Form; Thomas Telford Publishing: London, UK, 1994; pp. 75–87. [Google Scholar] [CrossRef]
- Dronkers, J. Tidal asymmetry and estuarine morphology. Neth. J. Sea Res. 1986, 20, 117–131. [Google Scholar] [CrossRef]
Band | Band | Central | Band | Spatial |
---|---|---|---|---|
Number | Name | Wavelength (nm) | Width (nm) | Resolution (m) |
2 | B02-Blue | 490 | 65 | 10 |
3 | B03-Green | 560 | 35 | 10 |
4 | B04-Red | 665 | 30 | 10 |
8 | B08-NIR | 842 | 115 | 10 |
11 | B11-SWIR | 1610 | 90 | 20 |
Study Site | Acquisition Date | Time Lag in Weeks | Mission | Tide Level |
---|---|---|---|---|
Berck shoreline | 26 September 2018 | −3 | Sentinel-2 | High |
16 October 2018 | 0 | Sentinel-2 | Low | |
Berck shoreline | 1 September 2019 | −3 | Sentinel-2 | High |
21 September 2019 | 0 | Sentinel-2 | Low | |
Authie Bay | 19 January 2019 | −4 | Sentinel-2 | Intermediate |
21 January 2019 | −4 | Sentinel-2 | High | |
15 February 2019 | 0 | Sentinel-2 | Low | |
23 February 2019 | 1 | Sentinel-2 | Low | |
25 February 2019 | 1 | Sentinel-2 | Low | |
1 April 2019 | 6 | Sentinel-2 | Intermediate Low | |
6 April 2019 | 7 | Landsat-8 | Intermediate High | |
21 April 2019 | 9 | Sentinel-2 | Intermediate | |
Authie Bay | 1 September 2019 | −5 | Sentinel-2 | Intermediate High |
8 September 2019 | −4 | Sentinel-2 | Low | |
21 September 2019 | −2 | Sentinel-2 | Low | |
28 October 2019 | 4 | Sentinel-2 | High | |
10 November 2019 | 5 | Sentinel-2 | Intermediate | |
17 November 2019 | 6 | Sentinel-2 | Low | |
30 November 2019 | 8 | Sentinel-2 | Intermediate Low |
Assessment | Berck Shoreline | Authie Bay | ||
---|---|---|---|---|
October 2018 | September 2019 | February 2019 | October 2019 | |
R | 0.950 | 0.965 | 0.945 | 0.941 |
rmse | 0.345 | 0.300 | 0.355 | 0.376 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagot, P.; Huybrechts, N.; Sergent, P. Satellite-Derived Topography and Morphological Evolution around Authie Macrotidal Estuary (France). J. Mar. Sci. Eng. 2021, 9, 1354. https://doi.org/10.3390/jmse9121354
Bagot P, Huybrechts N, Sergent P. Satellite-Derived Topography and Morphological Evolution around Authie Macrotidal Estuary (France). Journal of Marine Science and Engineering. 2021; 9(12):1354. https://doi.org/10.3390/jmse9121354
Chicago/Turabian StyleBagot, Philippe, Nicolas Huybrechts, and Philippe Sergent. 2021. "Satellite-Derived Topography and Morphological Evolution around Authie Macrotidal Estuary (France)" Journal of Marine Science and Engineering 9, no. 12: 1354. https://doi.org/10.3390/jmse9121354
APA StyleBagot, P., Huybrechts, N., & Sergent, P. (2021). Satellite-Derived Topography and Morphological Evolution around Authie Macrotidal Estuary (France). Journal of Marine Science and Engineering, 9(12), 1354. https://doi.org/10.3390/jmse9121354