Organic Matter Redox State Driven by Specific Sources in Mangrove Sediments: A Case Study from Peruvian Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sedimentary Organic Matter Source
3.2. Redox State of Sedimentary Organic Matter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breithaupt, J.L.; Smoak, J.M.; Smith, T.J.; Sanders, C.J.; Hoare, A. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Glob. Biogeochem. Cycles 2012, 26, GB3011. [Google Scholar] [CrossRef]
- Pérez, A.; Libardoni, B.G.; Sanders, C.J. Factors influencing organic carbon accumulation in mangrove ecosystems. Biol. Lett. 2018, 14, 20180237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, C.J.; Eyre, B.D.; Santos, I.R.; Machado, W.; Luiz-Silva, W.; Smoak, J.M.; Breithaupt, J.L.; Ketterer, M.E.; Sanders, L.; Marotta, H.; et al. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophys. Res. Lett. 2014, 41, 2475–2480. [Google Scholar] [CrossRef]
- Pérez, A.; Machado, W.; Gutierrez, D.; Saldarriaga, M.S. Shrimp farming influence on carbon and nutrient accumulation within Peruvian mangroves sediments. Estuar. Coast. Shelf Sci. 2020, 243, 106879. [Google Scholar] [CrossRef]
- Ferreira, T.O.; Otero, X.L.; Vidal-Torrado, F. Redox Processes in Mangrove Soils under Rhizophora mangle in Relation to Different Environmental Conditions. Soil. Sci. Soc. Am. J. 2007, 71, 484–491. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Sanders, J.C.; Smoak, J.M.; Sanders, L.; Naidu, A.S.; Patchineelam, S.R. Organic carbon accumulation in Brazilian mangal sediments. J. S. Am. Earth Sci. 2010, 30, 189–192. [Google Scholar] [CrossRef]
- Pérez, A.; Gutiérrez, D.; Saldarriaga, M.; Sanders, C.J. Hydrological controls on the biogeochemical dynamics of a Peruvian mangrove system. Hydrobiologia 2017, 803, 69–86. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Pérez, A.; Machado, W.; Gutierrez, D.; Stokes, D.; Sanders, L.; Smoak, J.M.; Santos, I.; Sanders, C.J. Changes in organic carbon accumulation driven by mangrove expansion and deforestation in a New Zealand estuary. Estuar. Coast. Shelf Sci. 2017, 192, 108–116. [Google Scholar] [CrossRef]
- Scholz, F.; Schröder, U.; Gulabowski, R.; Doménech-Carbó, A. Electrochemistry of Immobilized Particles and Droplets, 2nd ed.; Scholz, F., Ed.; Monographs in Electrochemistry Series; Springer: Berlin/Heidelberg, Germany, 2014; p. 327. [Google Scholar]
- Cebrián-Torrejón, G.; Pérez, A.; Montoya, N.; Piquero-Cilla, J.; Saldarriaga, M.S.; Gutiérrez, D.; Sanders, C.J.; Machado, W.; Doménech-Carbó, A. Electrochemical characterization of mangrove sediments: A proposal of new proxies for organic matter oxidation. Appl. Geochem. 2019, 101, 42–49. [Google Scholar] [CrossRef]
- Pascaud, G.; Soubrand, M.; Lemee, L.; Laduranty, J.; El-Mufleh, A.; Rabiet, M.; Joussein, E. Molecular fingerprint of soil organic matter as an indicator of pedogenesis processes in Technosols. J. Soil. Sediment. 2017, 17, 340–351. [Google Scholar] [CrossRef]
- Sharma, P.; Laor, Y.; Raviv, M.; Medina, S.; Saadi, I.; Krasnovsky, A.; Vager, M.; Levy, G.; Bar-Tal, A.; Borisover, M. Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil. Geoderma 2017, 286, 73–82. [Google Scholar] [CrossRef]
- Scott, D.T.; McKnight, D.M.; Blunt-Harris, E.L.; Kolesar, S.E.; Lovley, D.R. Quinone moieties act as electron acceptors in the reduction of humic substances by humicsreducing microorganisms. Environ. Sci. Technol. 1998, 32, 2984–2989. [Google Scholar] [CrossRef]
- Gaberell, M.; Chin, Y.P.; Hug, S.J.; Sulzberger, B. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron. Environ. Sci. Technol. 2003, 37, 4403–4409. [Google Scholar] [CrossRef]
- Meunier, L.; Laubscher, H.; Hug, S.J.; Sulzberger, B. Effects of size and origin of natural dissolved organic matter compounds on the redox cycling of iron in sunlit surface waters. Aquat. Sci. 2005, 67, 292–307. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Gavara, R.; Hernandez, P.; Domínguez, I. Contact probe voltammetry for in situ monitoring of the reactivity of phenolic tomato (Solanum lycopersicum L.) compounds with ROS. Talanta 2015, 144, 1207–1215. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Cebrián-Torrejón, G.; Montya, N.; Ueberschaar, N.; Scotti, M.T.; Benfodda, Z.; Hetweck, C. Electrochemical monitoring of ROS generation by anticancer agents: The case of chartreusin. RSC Adv. 2017, 7, 45200–45210. [Google Scholar] [CrossRef] [Green Version]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010. [Google Scholar]
- Pérez, A.; Gutiérrez, D.; Saldarriaga, M.S.; Sanders, C.J. Tidally driven sulfidic conditions in Peruvian mangrove sediments. Biol. Lett. 2018, 38, 457–465. [Google Scholar] [CrossRef]
- Lagos, P.; Silva, Y.; Nickl, E.; Mosquera, K. El Niño-related precipitation variability in Peru. Adv. Geosci. 2008, 14, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Lavado, W.; Espinoza, J.C. Impactos de El Niño y La Niña en las lluvias del Peru´ (1965–2007). Rev. Bras. Meteorol. 2014, 29, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, P.; Kennedy, H.; Papadimitriou, S. The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Commun. Mass Spectrom 2005, 19, 1063–1068. [Google Scholar] [CrossRef]
- Pérez, A.; Machado, W.; Gutierrez, D.; Smoak, J.M.; Breithaupt, J.L.; Saldarriaga, M.S.; Sanders, L.; Marotta, H.; Sanders, C.J. Carbon and nutrient accumulation in mangrove sediments affected by multiple environmental changes. J. Soils Sediments 2020, 20, 2504–2509. [Google Scholar] [CrossRef]
- Alongi, D.M. The Energetics of Mangrove Forests; Springer: Berlin/Heidelberg, Germany, 2009; p. 216. [Google Scholar]
- Fry, B.; Sherr, E.B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 1984, 27, 13–47. [Google Scholar]
- Boutton, T.W. Stable Carbon Isotope Ratios of Natural Materials, II: Atmospheric, Terrestrial, Marine, and Freshwater Environments. In Carbon Isotope Techniques; Coleman, D.C., Fry, B., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1991; pp. 177–185. [Google Scholar]
- Lovley, D.R.; Coates, J.D.; Blunt-Harris, E.L.; Phillips, E.J.P.; Woodward, J.C. Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445–448. [Google Scholar] [CrossRef]
- Fimmen, R.L.; Cory, R.M.; Chin, Y.P.; Trouts, T.D.; McKnight, D.M. Probing the oxidation–reduction properties of terrestrially and microbially derived organic matter. Geochim. Cosmochim. Acta 2007, 71, 3003–3015. [Google Scholar] [CrossRef]
- Rivalland, C.; Madhkour, S.; Salvin, P.; Robert, F. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment. Bioelectrochemistry 2015, 106, 125–132. [Google Scholar] [CrossRef] [PubMed]
Variables | n | Average Values | Statistical Significance |
---|---|---|---|
fEAOM | 30 | ZMa: 0.47 ± 0.24 ZMu: 0.63 ± 0.26 | N.S. |
A1650/A3400 | 30 | ZMa: 1.02 ± 0.25 ZMu: 0.74 ± 0.08 | ZMu < ZMa (*) |
C:N | 30 | ZMa: 15.48 ± 4.96 ZMu: 14.76 ± 2.03 | N.S. |
δ13C (‰) | 30 | ZMa: −26.15 ± 0.45 ZMu: −25.67 ± 0.46 | N.S. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, A.; Cebrián-Torrejón, G.; Montoya, N.; Piquero-Cilla, J.; Sanders, C.J.; Doménech-Carbó, A.; Machado, W. Organic Matter Redox State Driven by Specific Sources in Mangrove Sediments: A Case Study from Peruvian Ecosystems. J. Mar. Sci. Eng. 2021, 9, 1438. https://doi.org/10.3390/jmse9121438
Pérez A, Cebrián-Torrejón G, Montoya N, Piquero-Cilla J, Sanders CJ, Doménech-Carbó A, Machado W. Organic Matter Redox State Driven by Specific Sources in Mangrove Sediments: A Case Study from Peruvian Ecosystems. Journal of Marine Science and Engineering. 2021; 9(12):1438. https://doi.org/10.3390/jmse9121438
Chicago/Turabian StylePérez, Alexander, Gerardo Cebrián-Torrejón, Noemí Montoya, Joan Piquero-Cilla, Christian J. Sanders, Antonio Doménech-Carbó, and Wilson Machado. 2021. "Organic Matter Redox State Driven by Specific Sources in Mangrove Sediments: A Case Study from Peruvian Ecosystems" Journal of Marine Science and Engineering 9, no. 12: 1438. https://doi.org/10.3390/jmse9121438
APA StylePérez, A., Cebrián-Torrejón, G., Montoya, N., Piquero-Cilla, J., Sanders, C. J., Doménech-Carbó, A., & Machado, W. (2021). Organic Matter Redox State Driven by Specific Sources in Mangrove Sediments: A Case Study from Peruvian Ecosystems. Journal of Marine Science and Engineering, 9(12), 1438. https://doi.org/10.3390/jmse9121438