Path-Following Control Method for Surface Ships Based on a New Guidance Algorithm
Abstract
:1. Introduction
2. Mathematical Model of Ship Motion
2.1. Process Plant Model
2.2. Control Plant Model
2.3. Controller Parameter Identification
3. Optimal Heading Controller
3.1. LQR Controller
3.2. Feedback Nonlinearization Compensation
3.3. Extended State Observer
4. Guidance Law
4.1. Error Coordinates
4.2. Straight-Line Path Guidance
4.3. Curved Path Guidance
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breivik, M.; Fossen, T.I. Path following for marine surface vessels in Oceans. In Proceedings of the MTS/IEEE Techno-Ocean conference, Kobe, Japan, 9–12 November 2004; pp. 2282–2289. [Google Scholar]
- Dong, Z.P.; Wan, L.; Li, Y.M.; Zhang, G.C. Trajectory tracking control of underactuated USV based on modified backstepping approach. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 817–832. [Google Scholar] [CrossRef] [Green Version]
- Filipe, M.B.; Lucas, B.M. Robust path-following control for articulated heavy-duty vehicles. Control Eng. Pract. 2019, 85, 246–256. [Google Scholar]
- Fossen, T.I. Guidance and Control of Ocean Vehicles, 1st ed.; Wiley: New York, NY, USA, 1994; pp. 55–122. [Google Scholar]
- Breivik, M.; Fossen, T.I. Applying missile guidance concepts to motion control of marine craft. IFAC Proc. Vol. 2007, 40, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Fossen, T.I.; Pettersen, K.Y.; Galeazzi, R. Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces. Control Syst. Technol. IEEE 2015, 23, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Kelasidi, E.; Liljeback, P.; Pettersen, K.Y.; Gravdahl, J.T. Integral line-of-sight guidance for path following control of underwater snake robots: Theory and experiments. IEEE Trans. Robot. 2017, 33, 610–628. [Google Scholar] [CrossRef] [Green Version]
- Moe, S.; Pettersen, K.Y. Set-Based line-of-sight (LOS) path following with collision avoidance for underactuated unmanned surface vessels under the influence of ocean currents. In Proceedings of the IEEE Conference on Control Technology and Applications (CCTA), Mauna Lani, HI, USA, 27–30 August 2017; pp. 241–248. [Google Scholar]
- Moe, S.; Pettersen, K.Y.; Fossen, T.I.; Gravdahl, J.T. Line-of-sight curved path following for underactuated USVs and AUVs in the horizontal plane under the influence of ocean currents. In Proceedings of the 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016; pp. 38–45. [Google Scholar]
- Fossen, T.I.; Lekkas, A.M. Direct and indirect adaptive integral line-of-sight path following controllers for marine craft exposed to ocean currents. Int. J. Adapt. Control Signal Process. 2017, 31, 445–463. [Google Scholar] [CrossRef]
- Korkmaz, F.C.; Su, M.E.; Alarcin, F. Control of a ship shaft torsional vibration via modified PID controller. Brodogradnja 2014, 65, 17–27. [Google Scholar]
- Samanta, B.; Nataraj, C. Design of intelligent ship autopilots using particle swarm optimization. In Proceedings of the IEEE Swarm Intelligence Symposium, St. Louis, MO, USA, 21–23 September 2008; pp. 1–7. [Google Scholar]
- Johansen, T.A.; Fuglseth, T.P.; Tondel, P.; Fossen, T.I. Optimal constrained control allocation in marine surface vessels with rudders. Control Eng. Pract. 2008, 16, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.D.; Tzeng, C.Y.; Huang, W.W. Ship streeing autopilot based on ANFIS framework and conditional turing scheme. Mar. Eng. Front. 2013, 1, 53–62. [Google Scholar]
- Dlabac, T.; Calasan, M.; Krcum, M.; Marvucic, N. PSO-Based PID controller design for ship course-keeping autopilot. Brodogradnja/Shipbuilding 2019, 70, 1–15. [Google Scholar] [CrossRef]
- Oh, S.R.; Sun, J. Path following of underactuated marine surface vessels using line-of-sight based model predictive control. Ocean Eng. 2010, 37, 289–295. [Google Scholar] [CrossRef]
- Guerrero, J.; Torres, J.; Creuze, A. Trajectory tracking for autonomous underwater vehicle: An adaptive approach. Ocean Eng. 2019, 172, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.S. The use of artificial neural networks for the intelligent optimal control of surface ships. Ocean Eng. 1995, 20, 65–72. [Google Scholar] [CrossRef]
- Dai, S.; Wang, C.; Luo, F. Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 2012, 8, 801–810. [Google Scholar] [CrossRef]
- Nicolau, V. On PID controller design by combining pole placement technique with symmetrical optimum criterion. Math. Probl. Eng. 2013, 2013, 1024–1231. [Google Scholar] [CrossRef] [Green Version]
- Rigatos, G.; Tzafestas, S. Adaptive fuzzy control for the ship steering problem. Mechatronics 2006, 16, 479–489. [Google Scholar] [CrossRef]
- Godbole, A.A.; Libin, T.R.; Talole, S.E. Extended state observer based robust pitch autopilot design for tactical missiles. Mech. Eng. Part G J. Aerosp. Eng. 2011, 226, 1482–1501. [Google Scholar] [CrossRef]
- Wang, H.B.; Veremey, E.I.; Xue, Y. A method of the guaranteeing of optimization for the dynamics of ship moving in wave. Vestn. Sankt-Peterburgskogo Univ. Ser. 10 Prikl. Mat. Inform. Protsessy Upravieniya 2017, 13, 354–364. [Google Scholar] [CrossRef]
- Sun, Z.P.; Wu, Q.; Li, X.G.; Wang, H.B. A design of based on the feedback linearization optimal heading control algorithm. Inf. Technol. Res. 2019, 12, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Veremey, E.I.; Pogozhev, S.V.; Sotnikova, M.V. Marine autopilots’ multipurpose control laws synthesis for actuators time delay. J. Mar. Sci. Eng. 2020, 8, 477. [Google Scholar] [CrossRef]
- Du, J.L.; Hu, X.; Sun, Y.Q. Adaptive robust nonlinear control design for course tracking of ships subject to external disturbances and input saturation. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 193–202. [Google Scholar] [CrossRef]
- Wu, R.; Du, J.L. Adaptive robust course-tracking control of time-varying uncertain ships with disturbances. Int. J. Control Autom. Syst. 2019, 17, 1847–1855. [Google Scholar] [CrossRef]
- Xiang, X.B.; Yu, C.Y.; Lionel, L.; Zhang, J.L. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 2018, 20, 572–586. [Google Scholar] [CrossRef]
- Xu, H.T.; Fossen, T.I.; Soares, C.G. Uniformly semiglobally exponential stability of vector field guidance law and autopilot for path-following. Eur. J. Control 2020, 53, 88–97. [Google Scholar] [CrossRef]
- Liu, Y.; Bu, R.X.; Xu, H.J. Straight-path tracking control of underactuated ship based on backstepping method. In Proceedings of the 2015 Ninth International Conference on Frontier of Computer Science and Technology FCST, Dalian, China, 26–28 August 2015; pp. 223–227. [Google Scholar]
- Zhao, Y.; Dong, L.L. Robust path-following control of a container ship based on Serret-Frenet frame transformation. J. Mar. Sci. Technol. 2020, 25, 69–80. [Google Scholar] [CrossRef]
- Xu, H.T.; Oliveira, P.; Guedes, S.C. L1 adaptive backstepping control for path-following of underactuated marine surface ships. Eur. J. Control 2020. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Maritime Navigation and Radiocommunication Equipment and Systems—Track Control Systems—Operational and Performance Requirements, Methods of Testing and Required Test Results, 2nd ed.; 62065:2014; IEC: Geneva, Switzerland, 2014; pp. 1–212. [Google Scholar]
- Ramos, R.L. Linear quadratic optimal control of a spar-type floating offshore wind turbine in the presence of turbulent wind and different sea states. J. Mar. Sci. Eng. 2018, 6, 151. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Talole, S.E. Robust steering autopilot design for marine surface vessels. IEEE J. Ocean. Eng. 2016, 41, 913–922. [Google Scholar] [CrossRef]
- Hiadsi, S.; Bouafia, H.; Sahli, B.; Abidri, B.; Bouaza, A.; Akriche, A. Ship course identification model based on recursive least squares algorithm with dynamic forgetting factor. J. Comput. Appl. 2018, 38, 900–904. [Google Scholar]
- Aoki, M. Control of large-scale dynamic systems by aggregation. IEEE Trans. Autom. Control 1986, 13, 246–253. [Google Scholar] [CrossRef]
- Abedi, F.; Leong, W.J.; Abedi, M. Lyapunov characterization for the stability of stochastic control systems. Math. Probl. Eng. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Wang, X.F.; Zou, Z.J.; Li, T.S.; Luo, W.L. Adaptive path following controller of underactuated ships using serret-frenet frame. J. Shanghai Jiaotong Univ. 2010, 15, 334–339. [Google Scholar] [CrossRef]
Sea State (ss) | T0 (ss) | H0 (ss) |
---|---|---|
1 | 2.2 | 0.1 |
2 | 5 | 0.5 |
3 | 7.8 | 1.25 |
4 | 11 | 2.5 |
5 | 14 | 4 |
6 | 17.2 | 6 |
7 | 21.1 | 9 |
8 | 26.3 | 14 |
Parameter | Notation | Ship A Fast Ferry | Ship B Container | Ship C Tanker |
---|---|---|---|---|
Ship length | 60 | 250 | 350 | |
Thrust lever ramp time | 20 | 30 | 30 | |
Rudder ramp time | 12 | 30 | 30 | |
Rudder follow-up offset | 0 | 0 | 0 | |
Maximum speed | 30 | 25 | 10 | |
Rudder moment coefficient | 0.025 | 0.01 | 0.005 | |
Surge response time constant | 150 | 600 | 800 | |
Sway response time constant | 2 | 4 | 36 | |
Yaw response time constant | 4 | 23 | 46 | |
Stability coefficient | −0.05 | 0 | 0 |
v | Q | R | k1 | k2 | k3 | |||
---|---|---|---|---|---|---|---|---|
Ship A | 0.0798 | 11.1343 | 1.9899 | diag(100, 0.5, 1) | 5 | 3.0261 | 0.1414 | 0.2083 |
Ship B | 0.0794 | 10.8759 | 1.9863 | diag(100, 0.5, 1) | 5 | 2.9936 | 0.1414 | 0.2090 |
Ship C | 0.0794 | 10.8966 | 1.9913 | diag(100, 0.5, 1) | 5 | 2.9964 | 0.1414 | 0.2090 |
Data Name | Experimental Data | Actual Data | Error |
---|---|---|---|
Rotation diameter (nm) | 0.337 | 0.336 | 0.001 |
Fixed length rotation speed (deg/min) | 71 | 71 | 0 |
Steady surge speed (kn) | 12.9 | 12.9 | 0 |
Steady sway speed (kn) | −1.03 | −1.03 | 0 |
Tactical cycle diameter (nm) | 0.640 | 0.640 | 0 |
Advance (nm) | 0.555 | 0.551 | 0.004 |
Departure (nm) | 0.325 | 0.323 | 0.002 |
Types of Ships | Control Method | Overshoot (°) | Steady State Mean Deviation (°) | Steady State Maximum Deviation (°) | Response Time(s) |
---|---|---|---|---|---|
Ship class A Fast ferry | Traditional LQR | 1.700 | 0.625 | 0.500 | 253.3 |
Improved LQR | 2.600 | 0.365 | 0.200 | 142.5 | |
Ship class B Container | Traditional LQR | 4.600 | 0.395 | 0.600 | 215.1 |
Improved LQR | 0.100 | 0.075 | 0.100 | 125.7 | |
Ship class C Tanker | Traditional LQR | 0.900 | 0.450 | 0.900 | 190.5 |
Improved LQR | 0.300 | 0.275 | 0.100 | 459.6 |
Waypoint No. | Latitude | Longitude | Track [deg] | Distance [NM] | Radius [NM] | Estimated ROT [deg/min] |
---|---|---|---|---|---|---|
001 | 00°01.000′ S | 000°01.000′ W | 000.0 | 2.00 | 0.25 | 80 |
002 | 00°01.000′ N | 000°01.000′ W | 090.0 | 2.00 | 0.25 | 80 |
003 | 00°01.000′ N | 000°01.000′ E | 315.0 | 1.41 | 0.10 | 200 |
004 | 00°02.000′ N | 000°00.000′ E | 225.0 | 1.41 | 0.20 | 100 |
005 | 00°01.000′ N | 000°01.000′ W | 135.0 | 2.83 | 0.60 | 33 |
006 | 00°01.000′ S | 000°01.000′ E | 270.0 | 2.00 | 0.20 | 100 |
007 | 00°01.000′ S | 000°01.000′ W | 045.0 | 2.83 | 0.25 | 80 |
008 | 00°01.000′ N | 000°01.000′ E | 180.0 | 2.00 | 0.40 | 50 |
009 | 00°01.000′ S | 000°01.000′ E |
Waypoint No. | Latitude | Longitude | Track [deg] | Distance [NM] | Radius [NM] | Estimated ROT [deg/min] |
---|---|---|---|---|---|---|
001 | 65°00.000′ N | 000°20.000′ W | 040.2 | 6.54 | 0.50 | 40 |
002 | 65°05.000′ N | 000°10.000′ W | 139.8 | 13.09 | 1.0 | 20 |
003 | 64°55.000′ N | 000°10.000′ E | 040.2 | 6.55 | 2.0 | 10 |
004 | 65°00.000′ N | 000°20.000′ E |
Waypoint No. | Latitude | Longitude | Track [deg] | Distance [NM] | Radius [NM] | Estimated ROT [deg/min] |
---|---|---|---|---|---|---|
001 | 00°03.000′ S | 179°57.000′ W | 000.0 | 6.00 | 1.00 | 10 |
002 | 00°03.000′ N | 179°57.000′ W | 270.0 | 6.00 | 1.00 | 10 |
003 | 00°03.000′ N | 179°57.000′ E | 045.0 | 4.24 | 0.50 | 20 |
004 | 00°06.000′ N | 180°00.000′ W | 135.0 | 4.24 | 1.00 | 10 |
005 | 00°03.000′ N | 179°57.000′ W | 225.0 | 8.49 | 1.50 | 7 |
006 | 00°03.000′ S | 179°57.000′ E | 090.0 | 6.00 | 1.00 | 10 |
007 | 00°03.000′ S | 179°57.000′ W | 315.0 | 8.49 | 0.75 | 13 |
008 | 00°03.000′ N | 179°57.000′ E | 180.0 | 6.00 | 1.25 | 8 |
009 | 00°03.000′ S | 179°57.000′ E |
Parameters | Overshoot (m) | Peak Time (s) | Rising Time (s) | Setting Time (s) |
---|---|---|---|---|
Traditional PID | 176.9 | 532, 1305 | 243 | 1650 |
Adaptive PID | 48.51 | 527 | 135 | 1080 |
Traditional LQR | 23.32 | 1406 | 162 | 1097 |
Improved LQR | 22 | 1024 | 94 | 690 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhao, Y.; Zhao, G.; Wang, H.; Zhao, Y. Path-Following Control Method for Surface Ships Based on a New Guidance Algorithm. J. Mar. Sci. Eng. 2021, 9, 166. https://doi.org/10.3390/jmse9020166
Zhang Z, Zhao Y, Zhao G, Wang H, Zhao Y. Path-Following Control Method for Surface Ships Based on a New Guidance Algorithm. Journal of Marine Science and Engineering. 2021; 9(2):166. https://doi.org/10.3390/jmse9020166
Chicago/Turabian StyleZhang, Zhanshuo, Yuhan Zhao, Guang Zhao, Hongbo Wang, and Yi Zhao. 2021. "Path-Following Control Method for Surface Ships Based on a New Guidance Algorithm" Journal of Marine Science and Engineering 9, no. 2: 166. https://doi.org/10.3390/jmse9020166
APA StyleZhang, Z., Zhao, Y., Zhao, G., Wang, H., & Zhao, Y. (2021). Path-Following Control Method for Surface Ships Based on a New Guidance Algorithm. Journal of Marine Science and Engineering, 9(2), 166. https://doi.org/10.3390/jmse9020166