Asymmetric Frontal Response across the Gulf of Mexico Front in Winter 2016
Abstract
:1. Introduction
2. Overview of the Field Experiment
3. Experimental Methods
4. Results
4.1. Mixed Layer Depth—The VMP200 Downcasts
4.2. The Salinity, Temperature, and Density Vertical and Horizontal Variability Obtained from the VMP200 Upcasts
4.3. Cross Frontal TKED Vertical and Horizontal Variability
4.4. Turbulent Heat Flux and TD Variability along the Front
5. Discussion
5.1. The Wave Effects on the Vertical TKED Distribution
5.2. Layer Averaged Properties across the Front
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CVS | Cold-vertically stratified |
WHS | Warm-horizontally stratified |
TD | Temperature dissipation rate |
TKED | Turbulent kinetic energy dissipation rate |
GOM | Gulf of Mexico |
LASER | LAgrangian Submesoscale ExpeRiment |
CARTHE | Consortium for Advanced Research on Transport of Hydrocarbons in the Environment |
VMP | Vertical microstructure profiler |
THF | Turbulent heat flux |
SHF | Sensible heat flux |
LHF | Latent heat flux |
IW | Internal wave |
References
- Jaeger, G.S.; Mahadevan, A. Submesoscale-selective compensation of fronts in a salinity-stratified ocean. Sci. Adv. 2018, 4, e1701504. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, L.W.; Haack, T.; Chelton, D.B.; Skyllingstad, E. The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci. 2017, 74, 2383–2412. [Google Scholar] [CrossRef]
- Hall, I.R.; Starr, A.; Hemming, S.R.; Barker, S.; van der Lubbe, J.; Cartagena Sierra, A.; Berke, M.A.; Gruetzner, J.; Jiménez-Espejo, F.J.J.; Knorr, G.; et al. Surface and deep-water variability on the southern Agulhas Plateau: Interhemispheric links over the past 2 Ma. AGUFM 2019, 2019, PP52A-05. [Google Scholar]
- Nagai, T.; Tandon, A.; Yamazaki, H.; Doubell, M.J.; Gallager, S. Direct observations of microscale turbulence and thermohaline structure in the Kuroshio Front. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Bracco, A.; Cardona, Y.; McWilliams, J.C. Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input. Ocean Model. 2016, 101, 68–82. [Google Scholar] [CrossRef] [Green Version]
- D’Asaro, E.; Lee, C.; Rainville, L.; Harcourt, R.; Thomas, L. Enhanced turbulence and energy dissipation at ocean fronts. Science 2011, 332, 318–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.R. Accumulation and subduction of buoyant material at submesoscale fronts. J. Phys. Oceanogr. 2018, 48, 1233–1241. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, L.; Chen, G. Characterization of Sea Surface Temperature and Air-Sea Heat Flux Anomalies Associated With Mesoscale Eddies in the South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2019JC015470. [Google Scholar] [CrossRef]
- Petrenko, A.A.; Doglioli, A.M.; Nencioli, F.; Kersalé, M.; Hu, Z.; d’Ovidio, F. A review of the LATEX project: Mesoscale to submesoscale processes in a coastal environment. Ocean Dyn. 2017, 67, 513–533. [Google Scholar] [CrossRef] [Green Version]
- Baschek, B. Air-Sea Gas Exchange in Tidal Fronts. Ph.D. Thesis, University of Victoria, Victoria, Canada, 2002. [Google Scholar]
- Walker, N.D.; Pilley, C.T.; Raghunathan, V.V.; D’Sa, E.J.; Leben, R.R.; Hoffmann, N.G.; Brickley, P.J.; Coholan, P.D.; Sharma, N.; Graber, H.C.; et al. Impacts of Loop Current frontal cyclonic eddies and wind forcing on the 2010 Gulf of Mexico oil spill. Monit. Model. Deep. Horiz. Oil Spill: A Rec.-Break. Enterp. Geophys. Monogr. Ser 2011, 195, 103–116. [Google Scholar]
- Novelli, G.; Guigand, C.M.; Boufadel, M.C.; Özgökmen, T.M. On the transport and landfall of marine oil spills, laboratory and field observations. Mar. Pollut. Bull. 2020, 150, 110805. [Google Scholar] [CrossRef]
- Nagai, T.; Tandon, A.; Yamazaki, H.; Doubell, M.J. Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Oakey, N.; Elliott, J. Vertical temperature gradient structure across the Gulf Stream. J. Geophys. Res. 1977, 82, 1369–1380. [Google Scholar] [CrossRef]
- Inoue, R.; Gregg, M.; Harcourt, R. Mixing rates across the Gulf Stream, part 1: On the formation of Eighteen Degree Water. J. Mar. Res. 2010, 68, 643–671. [Google Scholar] [CrossRef]
- Jouanno, J.; Ochoa, J.; Pallàs-Sanz, E.; Sheinbaum, J.; Andrade-Canto, F.; Candela, J.; Molines, J.M. Loop Current frontal eddies: Formation along the Campeche Bank and impact of coastally trapped waves. J. Phys. Oceanogr. 2016, 46, 3339–3363. [Google Scholar] [CrossRef]
- Shao, M.; Ortiz-Suslow, D.G.; Haus, B.K.; Lund, B.; Williams, N.J.; Özgökmen, T.M.; Laxague, N.J.; Horstmann, J.; Klymak, J.M. The variability of winds and fluxes observed near submesoscale fronts. J. Geophys. Res. Ocean. 2019, 124, 7756–7780. [Google Scholar] [CrossRef]
- Bogucki, D.; Haus, B.K.; Shao, M. The Response of the Boundary Layer to Weak Forcing. In Ocean Sciences Meeting 2020; AGU: Washington, DC, USA, 2020. [Google Scholar]
- McWilliams, J.C. Submesoscale currents in the ocean. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20160117. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Shcherbina, A.Y.; Klymak, J.M.; Molemaker, J.; Novelli, G.; Guigand, C.M.; Haza, A.C.; Haus, B.K.; Ryan, E.H.; Jacobs, G.A.; et al. Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA 2018, 115, 1162–1167. [Google Scholar] [CrossRef] [Green Version]
- Barkan, R.; Molemaker, M.J.; Srinivasan, K.; McWilliams, J.C.; D’Asaro, E.A. The role of horizontal divergence in submesoscale frontogenesis. J. Phys. Oceanogr. 2019, 49, 1593–1618. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Carlson, D.F.; Chamecki, M.; Harcourt, R.R.; Haus, B.K.; Fox-Kemper, B.; Molemaker, M.J.; Poje, A.C.; Yang, D. Advances in Observing and Understanding Small-Scale Open Ocean Circulation During the Gulf of Mexico Research Initiative Era. Front. Marine Sci. 2020, 7, 349. [Google Scholar] [CrossRef]
- Drennan, W.M.; Donelan, M.; Madsen, N.; Katsaros, K.; Terray, E.A.; Flagg, C. Directional wave spectra from a Swath ship at sea. J. Atmos. Ocean. Technol. 1994, 11, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Lueck, R.G.; Hertzman, O.; Osborn, T.R. The spectral response of thermistors. Deep Sea Res. 1977, 24, 951–970. [Google Scholar] [CrossRef]
- Lueck, R.G.; Wolk, F.; Yamazaki, H. Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr. 2002, 58, 153–174. [Google Scholar] [CrossRef]
- Bogucki, D.J.; Haus, B.K.; Barzegar, M.; Shao, M.; Domaradzki, J.A. On the Nature of the Turbulent Energy Dissipation Beneath Nonbreaking Waves. Geophys. Res. Lett. 2020, 47, e2020GL090138. [Google Scholar] [CrossRef]
- Bluteau, C.E.; Lueck, R.G.; Ivey, G.N.; Jones, N.L.; Book, J.W.; Rice, A.E. Determining mixing rates from concurrent temperature and velocity measurements. J. Atmos. Ocean. Technol. 2017, 34, 2283–2293. [Google Scholar] [CrossRef]
- Metoyer, S.; Barzegar, M.; Bogucki, D.; Haus, B.K.; Shao, M. Measurement of small-scale surface velocity and turbulent kinetic energy dissipation rates using infrared imaging. J. Atmos. Ocean. Technol. 2021, 38, 269–282. [Google Scholar] [CrossRef]
- De Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef]
- McDougall, T.J.; Jackett, D.R.; Wright, D.G.; Feistel, R. Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Ocean. Technol. 2003, 20, 730–741. [Google Scholar] [CrossRef]
- Bogucki, D.; Haus, B.K.; Shao, M. The dissipation of energy beneath non-breaking waves. In Ocean Sciences Meeting 2020; AGU: Washington, DC, USA, 2020. [Google Scholar]
- Jackson, L.; Hallberg, R.; Legg, S. A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr. 2008, 38, 1033–1053. [Google Scholar] [CrossRef]
- Smith, J.A. A Comparison of Two Methods Using Thorpe Sorting to Estimate Mixing. J. Atmos. Ocean. Technol. 2020, 37, 3–15. [Google Scholar] [CrossRef]
- Fingas, M.; Hollebone, B.; Fieldhouse, B. The density behaviour of heavy oils in freshwater: The example of the Lake Wabamun spill. In Emergencies Science and Technology Division, Environment Canada; Government of Canada: Toronto, ON, Canada, 2006. [Google Scholar]
- Barzegar, M.; Bogucki, D.; Haus, B.K.; Shao, M. The Response of the Water Surface Layer to Internal Turbulence and Surface Forcing. J. Mar. Sci. Eng. 2021, 9, 217. [Google Scholar] [CrossRef]
- Moum, J.N. Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res. Ocean. 1996, 101, 14095–14109. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. Ocean. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Anis, A.; Moum, J. Surface wave–turbulence interactions. scaling ε (z) near the sea surface. J. Phys. Oceanogr. 1995, 25, 2025–2045. [Google Scholar] [CrossRef] [Green Version]
- Esters, L.; Breivik, Ø.; Landwehr, S.; ten Doeschate, A.; Sutherland, G.; Christensen, K.H.; Bidlot, J.R.; Ward, B. Turbulence scaling comparisons in the ocean surface boundary layer. J. Geophys. Res. Ocean. 2018, 123, 2172–2191. [Google Scholar] [CrossRef]
- Zahariev, K.; Garrett, C. An apparent surface buoyancy flux associated with the nonlinearity of the equation of state. J. Phys. Oceanogr. 1997, 27, 362–368. [Google Scholar] [CrossRef]
- Gargett, A.E.; Holloway, G. Dissipation and diffusion by internal wave breaking. J. Mar. Res. 1984, 42, 15–27. [Google Scholar] [CrossRef]
- Belkin, I.M.; Cornillon, P.C. Fronts in the world ocean’s large marine ecosystems. ICES CM 2007, 500, 21. [Google Scholar]
- Fredriksson, S.T.; Arneborg, L.; Nilsson, H.; Zhang, Q.; Handler, R.A. An evaluation of gas transfer velocity parameterizations during natural convection using DNS. J. Geophys. Res. Ocean. 2016, 121, 1400–1423. [Google Scholar] [CrossRef]
- Loh, A.; Shankar, R.; Ha, S.Y.; An, J.G.; Yim, U.H. Stability of mechanically and chemically dispersed oil: Effect of particle types on oil dispersion. Sci. Total Environ. 2020, 716, 135343. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.; Moghimi, S.; Restrepo, J.M.; Venkataramani, S. Modelling the mass exchange dynamics of oceanic surface and subsurface oil. Ocean Model. 2018, 129, 1–12. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzegar, M.; Bogucki, D.; Haus, B.K.; Ozgokmen, T.; Shao, M. Asymmetric Frontal Response across the Gulf of Mexico Front in Winter 2016. J. Mar. Sci. Eng. 2021, 9, 402. https://doi.org/10.3390/jmse9040402
Barzegar M, Bogucki D, Haus BK, Ozgokmen T, Shao M. Asymmetric Frontal Response across the Gulf of Mexico Front in Winter 2016. Journal of Marine Science and Engineering. 2021; 9(4):402. https://doi.org/10.3390/jmse9040402
Chicago/Turabian StyleBarzegar, Mohammad, Darek Bogucki, Brian K. Haus, Tamay Ozgokmen, and Mingming Shao. 2021. "Asymmetric Frontal Response across the Gulf of Mexico Front in Winter 2016" Journal of Marine Science and Engineering 9, no. 4: 402. https://doi.org/10.3390/jmse9040402
APA StyleBarzegar, M., Bogucki, D., Haus, B. K., Ozgokmen, T., & Shao, M. (2021). Asymmetric Frontal Response across the Gulf of Mexico Front in Winter 2016. Journal of Marine Science and Engineering, 9(4), 402. https://doi.org/10.3390/jmse9040402