Full-Scale CFD Analysis of Double-M Craft Seakeeping Performance in Regular Head Waves
Abstract
:1. Introduction
2. Double-M Craft Design and Test Conditions
3. Numerical Methodology for Seakeeping Tests
3.1. Governing Equations
3.2. Physical Modeling
3.3. Numerical Wave Tank
3.4. Mesh Generation
4. Comparison and Verification Study
4.1. Comparison Study
4.2. Verification Study
5. Calm Water Resistance
6. Added Resistance and Motions in Waves
6.1. Seakeeping Performance Assessment
6.2. Speed Loss Evaluation
6.3. Free Surface Deformation Analysis in Waves
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures and Abbreviations
(x,y,z) | Non-inertial ship-fixed coordinates |
3-D | Three dimensional |
A | Wave amplitude |
BCH | Beam center hull (m) |
BDH | Beam demihull/main hull (m) |
BOA | Beam overall (m) |
BSH | Beam side hull (m) |
C33 | Restoring heave force (N/m) |
C55 | Pitch moment (Nm) |
CAW | Added resistance coefficient (-) |
CB | Block coefficient (-) |
CFD | Computational Fluid Dynamics |
CFL | Courant–Friedrichs–Lewy |
CL | Centerline |
CP | Pressure resistance coefficient (-) |
CV | Viscous resistance coefficient (-) |
CT | Total resistance coefficient (-) |
DFBI | Dynamic Fluid Body Interaction |
DOF | Degree of Freedom |
ea21 | Approximate relative error (%) |
EERV | Emergency Response and Rescue Vessel |
eext21 | Extrapolated relative error (%) |
EFD | Experimental Fluid Dynamics |
fe | Encounter frequency (Hz) |
fext21 | Extrapolated values (-) |
Fr | Froude number (-) |
Fr∇ | Volumetric Fr number |
FVM | Finite Volume Method |
g | Gravity constant (m/s2) |
GCI | Grid Convergence Index |
H | Wave height (m) |
h | Tunnel height (m) |
HRIC | High-Resolution Interface-Capturing |
I55 | Moment of inertia in y-axis (kg/m3) |
IT | Transverse second moment of area of the waterplane (m4) |
ITTC | International Towing Tank Conference |
k | Wave number |
KG | Vertical center of gravity (m) |
L, LBP | Length between perpendiculars (m) |
LCB | Longitudinal Center of Buoyancy (aft of FP, m) |
LCH | Length waterline of center hull (m) |
LSH | Length waterline of side hulls (m) |
N1, N2, N3 | Fine, medium, and coarse grid (-) |
PB | Break power (W) |
PE | Effective power (W) |
Pest | Estimated order of accuracy (-) |
R | Convergence ratio (-) |
R&D | Research and Development |
RMS | Root mean square |
(U)RANS | (Unsteady) Reynolds Averaged Navier-Stokes |
RAO | Response amplitude operator |
Raw | Added resistance |
Rcw | Calm water resistance |
Re | Reynolds number (-) |
ri+1, i | Refinement factor (-) |
RT | Total resistance in calm water (N) |
RW | Total resistance in waves (N) |
S | Ship wetted surface (m2) |
s | Distance between the demihull centers (m) |
SIMPLE | Semi-Implicit Method for Pressure-Linked Equations |
T | Design draft (m) |
t | Thrust deduction factor (-) |
Te | Encounter period (s) |
U | Free-stream velocity (m/s) |
VOF | Volume of Fluid |
xf | Forcing length (m) |
y+ | Non-dimensional wall distance (-) |
Z | Mean heave amplitude [mm] |
Z′ | Heave RAO (-) |
Δ | Displacement [kg] |
ΔRwave | Added resistance in waves (N) |
Δt | Physical time step (s) |
ε | Turbulence dissipation rate (m2/s2) |
ζA | Mean wave amplitude (mm) |
ηduct | Ducting efficiency (-) |
ηjet | Jet efficiency (-) |
ηT | Overall performance efficiency (-) |
θ | Mean pitch amplitude [deg] |
θ′ | Pitch RAO (-) |
λ | Wavelength (m) |
ν | Kinematic viscosity (m2/s) |
ρ | Fluid density (kg/m3) |
σ | Sinkage in calm water (mm) |
τ | Trim in calm water (deg) |
References
- vant Veer, R. Experimental Results of Motions, Hydrodynamic Coefficients and Wave Loads on the 372 Catamaran Model; Delft University of Technology: Wageningen, The Netherlands, 1998. [Google Scholar]
- He, W.; Castiglione, T.; Kandasamy, M.; Stern, F. Numerical analysis of the interference effects on resistance, sinkage and trim of a fast catamaran. J. Mar. Sci. Technol. 2014, 20, 292–308. [Google Scholar] [CrossRef]
- Castiglione, T.; Stern, F.; Bova, S.; Kandasamy, M. Numerical investigation of the seakeeping behavior of a catamaran ad-vancing in regular head waves. Ocean Eng. 2011, 38, 1806–1822. [Google Scholar] [CrossRef]
- Bouscasse, B.; Broglia, R.; Stern, F. Experimental investigation of a fast catamaran in head waves. Ocean Eng. 2013, 72, 318–330. [Google Scholar] [CrossRef]
- He, W.; Diez, M.; Zou, Z.; Campana, E.F.; Stern, F. URANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometry. Ocean Eng. 2013, 74, 189–217. [Google Scholar] [CrossRef]
- Doğrul, A.; Kahramanoğlu, E.; Çakıcı, F. Numerical prediction of interference factor in motions and added resistance for Delft catamaran 372. Ocean Eng. 2021, 223, 108687. [Google Scholar] [CrossRef]
- Li, A.; Li, Y.; Zhang, D.; Fu, Z. Numerical study on hydrodynamic coefficients and longitudinal motions of trimaran in head seas for various wave slopes. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–14. [Google Scholar] [CrossRef]
- Nowruzi, L.; Enshaei, H.; Lavroff, J.; Kianejad, S.S.; Davis, M.R. CFD Simulation of Motion Response of a Trimaran in Regular Head Waves. Int. J. Marit. Eng. 2020, 162, 91. [Google Scholar] [CrossRef]
- Duan, W.; Wang, S.; Ma, S. Verification of application of the 2.5D method in high-speed trimaran vertical motion and added resistance prediction. Ocean Eng. 2019, 187, 106177. [Google Scholar] [CrossRef]
- Gong, J.; Yan, S.; Ma, Q.; Li, Y. Added resistance and seakeeping performance of trimarans in oblique waves. Ocean Eng. 2020, 216, 107721. [Google Scholar] [CrossRef]
- Sun, H.; Zou, J.; Sun, Z.; Lu, S. Numerical Investigations on the Resistance and Longitudinal Motion Stability of a High-Speed Planing Trimaran. J. Mar. Sci. Eng. 2020, 8, 830. [Google Scholar] [CrossRef]
- Ghadimi, P.; Nazemian, A.; Karam, S. Numerical simulation of the seakeeping of a military trimaran hull by a novel overset mesh method in regular and irregular waves. Sci. J. Marit. Univ. Szczec. 2021, 65, 38–50. [Google Scholar]
- Nazemian, A.; Ghadimi, P. Multi-objective optimization of trimaran sidehull arrangement via surrogate-based approach for reducing resistance and improving the seakeeping performance. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2020, 1475090220980275. [Google Scholar] [CrossRef]
- Nazemian, A.; Ghadimi, P. Global optimization of trimaran hull form to get minimum resistance by slender body method. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–20. [Google Scholar] [CrossRef]
- Yildiz, B.; Sener, B.; Duman, S.; Datla, R. A numerical and experimental study on the outrigger positioning of a trimaran hull in terms of resistance. Ocean Eng. 2020, 198, 106938. [Google Scholar] [CrossRef]
- Caprio, F.; Migali, A.; Pensa, C. Staggered Catamarans: Experimental data and feasibility study for environment friendly service. In Proceedings of the 12 International Congress of the International Maritime Association of the Mediterranean (Imam 2005), Lisboa, Portugal, 26–30 September 2005. [Google Scholar]
- Vernengo, G.; Villa, D.; Bruzzone, D.; Bonfiglio, L. A study on the added resistance of a catamaran advancing in waves considering variations of both operating and geometric parameters. Ships Offshore Struct. 2021, 16, 334–352. [Google Scholar] [CrossRef]
- Guo, B.; Steen, S.; Deng, G. Seakeeping prediction of KVLCC2 in head waves with RANS. Appl. Ocean Res. 2012, 35, 56–67. [Google Scholar] [CrossRef]
- Tezdogan, T.; Demirel, Y.K.; Kellett, P.; Khorasanchi, M.; Incecik, A.; Turan, O. Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming. Ocean Eng. 2015, 97, 186–206. [Google Scholar] [CrossRef] [Green Version]
- Sadat-Hosseini, H.; Wu, P.-C.; Carrica, P.M.; Kim, H.; Toda, Y.; Stern, F. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean Eng. 2013, 59, 240–273. [Google Scholar] [CrossRef]
- Huang, S.; Jiao, J.; Chen, C. CFD prediction of ship seakeeping behavior in bi-directional cross wave compared with in uni-directional regular wave. Appl. Ocean Res. 2020, 107, 102426. [Google Scholar] [CrossRef]
- M Ship Co. Trials Programme of M80 Starts in California, Fast Ferry International; M Ship Co.: San Diego, CA, USA, 2006. [Google Scholar]
- Mao, X.; Yan, L.; Shen, X.; Yu, Z. Study on the seakeeping of the wave-absorbing double m-craft in waves based on cfd. In Proceedings of the International Offshore and Polar Engineering Conference, Honolulu, HI, USA, 16–21 June 2019; pp. 2887–2895. [Google Scholar]
- Yanuar, I.; Waskito, K.T.; Karim, S.; Ichsan, M. Interference resistance of pentamaran ship model with asymmetric outrigger configurations. J. Mar. Sci. Appl. 2017, 16, 42–47. [Google Scholar] [CrossRef]
- Sulistyawati, W.; Yanuar, P.A.S. Michell’s thin ship theory in optimisation of warp-chine on pentamaran configuration. J. Appl. Fluid Mech. 2020, 13, 909–921. [Google Scholar] [CrossRef]
- Vant Veer, R. Experimental Results of Motions and Structural Loads on the 372 Catamaran Model in Head and Oblique Waves, 1130; TU Delft Rep: Wageningen, The Netherlands, 1998. [Google Scholar]
- CD-Adapco, S. STAR CCM+ User Guide Version 14.02; CD-Adapco: New York, NY, USA, 2017. [Google Scholar]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bekhit, A.; Lungu, A. URANSE simulation for the Seakeeping of the KVLCC2 Ship Model in Short and Long Regular Head Waves. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 591, p. 12102. [Google Scholar]
- ITTC. Fresh Water and Seawater Properties—7.5-02-01-03. In Proceedings of the 26th International Towing Tank Conference, Rio De Janeiro, Brazil, 28 August–3 September 2011. [Google Scholar]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Katopodes, N.D. Volume of Fluid Method. In Free-Surface Flow (ed NDBT-F-SF Katopodes); Butterworth-Heinemann: Oxford, UK, 2019; pp. 766–802. [Google Scholar] [CrossRef]
- Muzaferija, S. A two-fluid Navier-Stokes solver to simulate water entry. In Proceedings of the 22nd Symposium on Naval Archi-tecture; National Academy Press: Washington, DC, USA, 1999; pp. 638–651. [Google Scholar]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- ANSYS, I. ANSYS Fluent Theory Guide, Release 19.1; ANSYS Inc: Canonsburg, PA, USA, 2018. [Google Scholar]
- Sezen, S.; Cakici, F. Numerical Prediction of Total Resistance Using Full Similarity Technique. China Ocean Eng. 2019, 33, 493–502. [Google Scholar] [CrossRef]
- Davis, P.L.; Rinehimer, A.T.; Uddin, M. A comparison of RANS-based turbulence modeling for flow over a wall-mounted square cylinder. In Proceedings of the 20th Annual Conference of the CFD Society of Canada, Canmore, AB, Canada, 9–11 May 2012. [Google Scholar]
- Perić, R.; Abdel-Maksoud, M. Analytical prediction of reflection coefficients for wave absorbing layers in flow simulations of regular free-surface waves. Ocean Eng. 2018, 147, 132–147. [Google Scholar] [CrossRef] [Green Version]
- Peric, R.; Abdel-Maksoud, M. Reliable damping of free-surface waves in numerical simulations. Ship Technol. Res. 2016, 63, 1–13. [Google Scholar] [CrossRef] [Green Version]
- ITTC. Practical guidelines for ship CFD applications—7.5-03-02-03. In Proceedings of the 26th International Towing Tank Conference, Rio De Janeiro, Brazil, 28 August–3 September 2011. [Google Scholar]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics; Springer Science and Business Media LLC: Berlin, Germany, 2016. [Google Scholar]
- Delen, C.; Can, U.; Bal, S. Prediction of Resistance and Self-Propulsion Characteristics of a Full-Scale Naval Ship by CFD-Based GEOSIM Method. J. Ship Res. 2020, 1–16. [Google Scholar] [CrossRef]
- Cakici, F.; Sukas, O.F.; Kinaci, O.K.; Alkan, A.D. Prediction of the Vertical Motions of Dtmb 5415 Ship Using Different Numerical Approaches. Brodogradnja 2017, 68, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Cakici, F.; Kahramanoglu, E.; Duman, S.; Alkan, A.D. A new URANS based approach on the prediction of vertical motions of a surface combatant in head waves. Ocean Eng. 2018, 162, 21–33. [Google Scholar] [CrossRef]
- Ozturk, D. Performance of a Magnus effect-based cylindrical roll stabilizer on a full-scale Motor-yacht. Ocean Eng. 2020, 218, 108247. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 78001–78004. [Google Scholar] [CrossRef] [Green Version]
- Soydan, A.; Bal, S. An investigation of scale effects on marine propeller under cavitating and non-cavitating conditions. Ship Technol. Res. 2021, 1–13. [Google Scholar] [CrossRef]
- Uzun, D.; Sezen, S.; Ozyurt, R.; Atlar, M.; Turan, O. A CFD study: Influence of biofouling on a full-scale submarine. Appl. Ocean Res. 2021, 109, 102561. [Google Scholar] [CrossRef]
- De Luca, F.; Mancini, S.; Miranda, S.; Pensa, C. An Extended Verification and Validation Study of CFD Simulations for Planing Hulls. J. Ship Res. 2016, 60, 101–118. [Google Scholar] [CrossRef]
- Stern, F.; Wilson, R.V.; Coleman, H.W.; Paterson, E.G. Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures. J. Fluids Eng. 2001, 123, 793–802. [Google Scholar] [CrossRef]
- ITTC. Fresh Water and Seawater Properties—7.5-02-02-01.02. In Proceedings of the 26th International Towing Tank Conference, Rio Janeiro, Brazil, 28 August–3 September 2011. [Google Scholar]
- ITTC. High-Speed Marine Vehicles Resistance Test—7.5-02-05-01. In Proceedings of the 28th International Towing Tank Conference, Wuxi, China, 17–22 September 2017; pp. 1–19. [Google Scholar]
- El Moctar, O.; Sigmund, S.; Ley, J.; Schellin, T.E. Numerical and experimental analysis of added resistance of ships in waves. J. Offshore Mech. Arct. Eng. 2017, 139. [Google Scholar] [CrossRef]
- Faltinsen, O.M.; Minsaas, K.J.; Liapis, N.; Skjordal, S.O. Prediction of Resistance and Propulsion of a Ship in a Seaway. In Proceedings of the 13th symposium on naval hydrodynamics, Tokyo, Japan, 6–10 October 1980; pp. 505–529. [Google Scholar]
- Lewis, E.V. Principles of Naval Architecture Second Revision Volume III Motions in Waves and Controllability; Society of Naval Architects and Marine Engineers (SNAME): Alexandria, VA, USA, 1989. [Google Scholar]
- Fonseca, N.; Soares, C.G. Experimental Investigation of the Nonlinear Effects on the Vertical Motions and Loads of a Containership in Regular Waves. J. Ship Res. 2004, 48, 118–147. [Google Scholar] [CrossRef]
- Simonsen, C.D.; Otzen, J.F.; Joncquez, S.; Stern, F. EFD and CFD for KCS heaving and pitching in regular head waves. J. Mar. Sci. Technol. 2013, 18, 435–459. [Google Scholar] [CrossRef]
- ITTC. Seakeeping Experiments -7.5-02-07-02.01. In Proceedings of the 28th International Towing Tank Conference, Wuxi, China, 17–22 September 2017; China Ocean Press: Beijing, China, 2017. [Google Scholar]
- Stern, F.; Carrica, P.; Kandasamy, M.; Ooi, S. Computational hydrodynamic tools for high-speed sealift: Phase II final report. IIHR Tech. Rep. 2008. Available online: https://www.semanticscholar.org/paper/Computational-Hydrodynamic-Tools-for-High-Speed-II-Stern-Carrica/15bcac9d7c14a6cea822ad851d29fd9ab457f0e4#citing-papers (accessed on 13 April 2021).
- Kandasamy, M.; Peri, D.; Tahara, Y.; Wilson, W.; Miozzi, M.; Georgiev, S.; Milanov, E.; Campana, E.F.; Stern, F. Simulation based design optimization of waterjet propelled Delft catamaran. Int. Shipbuild. Prog. 2013, 60, 277–308. [Google Scholar]
- Chen, X.; Diez, M.; Kandasamy, M.; Campana, E.F.; Stern, F. Design optimization of the waterjet-propelled Delft Catamaran in calm water using URANS, design of experiments, metamodels and swarm intelligence. In Proceedings of the 12th International Conference on Fast Sea Transportation (FAST2013), Amsterdam, The Netherlands, 2–5 December 2013. [Google Scholar]
- Kandasamy, M.; Georgiev, S.; Milanov, E.; Stern, F. 2011 Numerical and experimental evaluation of waterjet propelled delft catamarans. In Proceedings of the 11th International Conference on Fast Sea Transportation FAST, Honolulu, HI, USA, 26–29 September 2011. [Google Scholar]
- Kim, M.; Hizir, O.; Turan, O.; Day, S.; Incecik, A. Estimation of added resistance and ship speed loss in a seaway. Ocean Eng. 2017, 141, 465–476. [Google Scholar] [CrossRef] [Green Version]
Parameters | Symbol (Units) | Delft 372 Catamaran | Double-M Craft |
---|---|---|---|
Condition | - | Model | Full-scale (λ = 5) |
Length between Perpendiculars | LBP (m) | 3.000 | 15.000 |
Length Waterline of Center Hull | LCH (m) | - | 14.588 |
Length Waterline of Side Hulls | LSH (m) | - | 13.220 |
Beam Demihull/Main Hull | BDH (m) | 0.240 | 1.200 |
Beam Center Hull | BCH (m) | - | 0.402 |
Beam Side Hull | BSH (m) | - | 0.201 |
Beam Overall | BOA (m) | 0.940 | 6.660 |
Distance between the Demihull Centers | s (m) | 0.700 | 3.500 |
Tunnel Height | h (m) | - | 0.460 |
Draft | T (m) | 0.150 | 0.750 |
Wetted Surface Area | S (m2) | 1.945 | 63.983 |
Displacement | Δ (kg) | 87.070 | 11,505.715 |
Velocity | U (m/s) | 3.797 | 8.491 |
Fr Number | Fr (-) | 0.700 | |
Volumetric Fr Number | Fr∇ (-) | 1.821 | 1.804 |
Longitudinal Center of Buoyancy (aft of FP) | LCB (m) | 1.410 | 7.244 |
Vertical Center of Gravity (from keel) | KG (m) | 0.340 | 1.334 |
Froude Number, Fr | Velocity, U (m/s) | Wave Height, H (m) | Wave Length, λ (m) | Encounter Frequency, fe (1/s) | Encounter Period, Te (s) | Wave Steepness, H/λ | Wave/ Ship Length, λ/L |
---|---|---|---|---|---|---|---|
0.7 | 3.797 | 0.046 | 3.00 | 1.987 | 0.503 | 1/60 | 1.00 |
0.076 | 4.50 | 1.433 | 0.698 | 1.50 | |||
0.099 | 6.00 | 1.143 | 0.875 | 2.00 |
Froude Number, Fr | Velocity, U (m/s) | Wave Height, H (m) | Wave Length, λ (m) | Encounter Frequency, fe (1/s) | Encounter Period, Te (s) | Wave Steepness, H/λ | Wave/ Ship Length, λ/L |
---|---|---|---|---|---|---|---|
0.7 | 8.491 | 0.250 | 15.00 | 0.889 | 1.125 | 1/60 | 1.00 |
0.333 | 19.95 | 0.705 | 1.418 | 1.33 | |||
0.375 | 22.50 | 0.641 | 1.561 | 1.50 | |||
0.438 | 26.25 | 0.567 | 1.763 | 1.75 | |||
0.500 | 30.00 | 0.511 | 1.956 | 2.00 | |||
0.625 | 37.50 | 0.430 | 2.323 | 2.50 |
Fr = 0.7 | Resistance (N) | Sinkage (mm) | Trim (deg) |
---|---|---|---|
EFD [1] | 70.60 | −2.390 | 1.900 |
Present CFD | 70.754 | −2.507 | 1.672 |
Error (% of EFD) | 0.22% | 4.91% | −12.00% |
Case | λ/L (-) | Heave RAO (-) | Pitch RAO (-) | (N) | CAW (-) |
---|---|---|---|---|---|
EFD [4] | 1.00 | 0.236 | 0.214 | 1.574 | 3.881 |
Present CFD | 0.275 | 0.236 | 1.718 | 4.591 | |
Error (% of EFD) | 16.53% | 10.28% | 9.15% | 18.29% | |
EFD [4] | 1.50 | 1.963 | 0.828 | 12.862 | 11.703 |
Present CFD | 2.012 | 0.902 | 11.282 | 11.959 | |
Error (% of EFD) | 2.49% | 8.99% | 12.28% | 2.19% | |
EFD [4] | 2.00 | 2.437 | 1.158 | 11.919 | 6.384 |
Present CFD | 2.742 | 1.212 | 11.598 | 6.421 | |
Error (% of EFD) | 12.51% | 4.65% | 2.69% | 0.58% |
Components | Delft 372 Catamaran | Double-M Craft | ||
---|---|---|---|---|
Resistance Test | Seakeeping Test (λ/L = 1.50) | Resistance Test | Seakeeping Test (λ/L = 1.50) | |
Fine (No. of cells) | 2,963,500 | 3,102,448 | 4,289,200 | 5,163,500 |
Medium (No. of cells) | 1,677,230 | 2,175,345 | 2,241,359 | 3,533,265 |
Coarse (No. of cells) | 922,978 | 1,508,214 | 1,117,326 | 2,543,605 |
r21 | 1.329 | 1.194 | 1.383 | 1.209 |
r32 | 1.348 | 1.201 | 1.416 | 1.179 |
R | 0.268 | 0.482 | 0.454 | 0.346 |
RT1 (N) | 70.754 | 82.349 | 9727.482 | 10,272.624 |
RT2 (N) | 70.421 | 81.780 | 9793.774 | 10,626.166 |
RT3 (N) | 69.187 | 80.600 | 9939.854 | 11,648.18 |
pest | 4.334 | 3.867 | 2.132 | 6.9068 |
f21ext | 70.887 | 82.926 | 9661.023 | 10,142.0158 |
(%) e21a | 0.467 | 0.691 | 0.681 | 3.4416 |
(%) e21ext | 0.191 | 0.696 | 0.688 | 1.2878 |
(%) GCI21fine | 0.240 | 0.876 | 0.854 | 1.59 |
(-) | (-) | (-) | (-) | τ (deg) | |
---|---|---|---|---|---|
Delft 372 Catamaran | 1.928 | 3.122 | 5.050 | −0.080 | 1.672 |
Double-M Craft | 1.882 | 2.339 | 4.221 | −0.209 | 0.846 |
Difference | 2.45% | - | - | - | - |
Fr (-) | U (m/s) | (-) | (-) | (-) | (-) | τ (deg) |
---|---|---|---|---|---|---|
0.30 | 3.639 | 1.339 | 2.507 | 3.846 | −0.289 | −1.199 |
0.40 | 4.852 | 1.739 | 2.499 | 4.237 | −0.460 | −1.005 |
0.45 | 5.459 | 3.278 | 2.417 | 5.695 | −0.565 | 0.133 |
0.50 | 6.064 | 3.728 | 2.385 | 6.113 | −0.481 | 0.977 |
0.60 | 7.277 | 2.852 | 2.247 | 5.099 | −0.143 | 1.257 |
0.70 | 8.484 | 2.058 | 2.170 | 4.228 | −0.209 | 0.846 |
Case No. | λ/L | ||
---|---|---|---|
P01 | 1.00 | 0.105 | 0.282 |
P02 | 1.33 | 0.335 | 0.415 |
P03 | 1.50 | 0.553 | 0.582 |
P04 | 1.75 | 0.832 | 0.734 |
P05 | 2.00 | 1.070 | 0.887 |
P06 | 2.50 | 1.185 | 0.825 |
Calm Water | In Waves (λ/L = 1.75) | |
---|---|---|
@Fr = 0.7 (m/s) | = 8.484 | |
(N) | 9727.482 | 10,460.84 |
(W) | 82,527.96 | = 82,527.96 |
0.65 | 0.65 | |
(W) | 126,944.7 | = 126,944.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, D.; Delen, C.; Mancini, S.; Serifoglu, M.O.; Hizarci, T. Full-Scale CFD Analysis of Double-M Craft Seakeeping Performance in Regular Head Waves. J. Mar. Sci. Eng. 2021, 9, 504. https://doi.org/10.3390/jmse9050504
Ozturk D, Delen C, Mancini S, Serifoglu MO, Hizarci T. Full-Scale CFD Analysis of Double-M Craft Seakeeping Performance in Regular Head Waves. Journal of Marine Science and Engineering. 2021; 9(5):504. https://doi.org/10.3390/jmse9050504
Chicago/Turabian StyleOzturk, Deniz, Cihad Delen, Simone Mancini, Mehmet Ozan Serifoglu, and Turgay Hizarci. 2021. "Full-Scale CFD Analysis of Double-M Craft Seakeeping Performance in Regular Head Waves" Journal of Marine Science and Engineering 9, no. 5: 504. https://doi.org/10.3390/jmse9050504
APA StyleOzturk, D., Delen, C., Mancini, S., Serifoglu, M. O., & Hizarci, T. (2021). Full-Scale CFD Analysis of Double-M Craft Seakeeping Performance in Regular Head Waves. Journal of Marine Science and Engineering, 9(5), 504. https://doi.org/10.3390/jmse9050504