Fine Spatial Scale, Frequent Morphological Monitoring of Urbanised Beaches to Improve Coastal Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Sedimentary Balance
2.2.2. Changes to the Coastline Position
2.2.3. Anthropic Impact
3. Results
3.1. Sedimentary Balance
3.2. Coastline Changes
3.3. The k Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Structure | Segment | Type of Structure | Length (m) | Beach Zone | Condition of the Structure | Approximate Construction Date |
---|---|---|---|---|---|---|
1 | 3 | Rock revetment | 76.61 | Intertidal | Good | 2019 |
2 | 3 and 4 | Rock revetment | 242.49 | Intertidal | Good | 2019 |
3 | 3 and 4 | Damaged pentapod revetment | 70.57 | Intertidal | Poor | NA |
4 | 4 | Rocky groin | 49.83 | Intertidal | Good | 2019 |
5 | 5 | Retaining wall | 52.56 | Intertidal | Acceptable | NA |
6 | 5 | Rock revetment | 11.30 | Subtidal | Good | NA |
7 | 5 | Rock revetment | 29.45 | Intertidal | Good | 2019 |
8 | 5 | Rock revetment | 84.57 | Intertidal | Good | 2019 (reinforced) |
9 | 5 | Damaged pentapod groin | 40.61 | Subtidal | Poor | NA |
10 | 5 | Retaining wall | 18.71 | Intertidal | Acceptable | 1985 |
11 | 5 | Rock + pentapod revetment | 40.71 | Intertidal | Good | NA |
12 | 5 | Seawall + Tires | 27.95 | Intertidal | Good | NA |
13 | 5 and 6 | Rock + pentapod revetment | 119.34 | Intertidal | Acceptable | NA |
14 | 6 | Retaining wall | 38.00 | Intertidal | Poor | NA |
15 | 6 | Rock revetment | 26.00 | Intertidal | Acceptable | NA |
16 | 6 | Retaining wall | 16.00 | Intertidal | Poor | 1986 |
17 | 6 | Rock revetment | 20.71 | Intertidal | Poor | 1985 |
18 | 6 | Retaining wall | 23.00 | Intertidal | Acceptable | 1984 |
19 | 6 | Rock + pentapod revetment | 10.55 | Intertidal | Acceptable | 1984 |
20 | 6 | Retaining wall | 27.00 | Intertidal | Acceptable | 1990 |
21 | 6 | Rock revetment | 6.24 | Intertidal | Good | 2002 |
22 | 6 | Rock revetment | 14.00 | Intertidal | Good | 2002 |
23 | 6 | Rock revetment | 8.00 | Intertidal | Good | 2002 |
24 | 7 | Damaged pentapod revetment | 54.61 | Intertidal | Poor | NA |
25 | 7 | Rock revetment | 18.44 | Intertidal | Acceptable | NA |
26 | 7 | Breakwater | 13.00 | Subtidal | Acceptable | 1990 |
27 | 7 | Rock revetment | 44.21 | Intertidal | Poor | 1990 |
28 | 7 | Retaining wall | 14.00 | Intertidal | Good | NA |
29 | 7 | Pentapod groin | 13.00 | Subtidal | Poor | NA |
30 | 7 | Retaining wall | 54.00 | Intertidal | Good | 1998 |
31 | 7 | Pentapod groin | 8.00 | Subtidal | Acceptable | NA |
32 | 7 | Pentapod groin | 7.00 | Subtidal | Poor | 1988 |
33 | 7 | Retaining wall | 10.50 | Intertidal | Good | 1990 |
34 | 7 | Retaining wall | 15.00 | Intertidal | Good | NA |
Appendix C
References
- Carvalho, B. Mapping the urbanized beaches of Rio de Janeiro: Modernization, modernity and everyday life. J. Lat. Am. Cult. Stud. 2007, 16, 325–339. [Google Scholar] [CrossRef]
- Costa, L.L.; Tavares, D.C.; Suciu, M.C.; Rangel, D.F.; Zalmon, I.R. Human-induced changes in the trophic functioning of sandy beaches. Ecol. Indic. 2017, 82, 304–315. [Google Scholar] [CrossRef]
- De Muro, S.; Porta, M.; Pusceddu, N.; Frongia, P.; Passarella, M.; Ruju, A.; Buosi, C.; Ibba, A. Geomorphological processes of a Mediterranean urbanized beach (Sardinia, Gulf of Cagliari). J. Maps 2018, 14, 114–122. [Google Scholar] [CrossRef]
- Stein, L.P.; Siegle, E. Overtopping events on seawall-backed beaches: Santos Bay, SP, Brazil. Reg. Stud. Mar. Sci. 2020, 40, 101492. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; Hesp, P.A.; Catalan, P.; Osorio, A.F.; Martell, R.; Fossati, M.; Miot da Silva, G.; Mariño-Tapia, I.; Pereira, P. Present and future challenges of coastal erosion in Latin America. J. Coast. Res. 2014, 71, 1–16. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- French, C.E.; French, J.R.; Clifford, N.J.; Watson, C.J. Sedimentation–Erosion dynamics of abandoned reclamations: The role of waves and tides. Cont. Shelf Res. 2000, 20, 1711–1733. [Google Scholar] [CrossRef]
- Silva, R.; Oumeraci, H.; Martínez, M.L.; Chávez, V.; Lithgow, D.; van Tussenbroek, B.I.; van Rijswick, H.F.; Bouma, T.J. Ten commandments for sustainable, safe, and W/healthy Sandy coasts facing global change. Front. Mar. Sci. 2021, 8, 126. [Google Scholar] [CrossRef]
- Silva, R.; Chávez, V.; Bouma, T.J.; van Tussenbroek, B.I.; Arkema, K.K.; Martínez, M.L.; Oumeraci, H.; Heymans, J.J.; Osorio, A.F.; Mendoza, E. The incorporation of biophysical and social components in coastal management. Estuaries Coasts 2019, 42, 1695–1708. [Google Scholar] [CrossRef] [Green Version]
- van Rijn, L.C. Coastal erosion and control. Ocean Coast. Manag. 2011, 54, 867–887. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.G.; Anfuso, G.; Williams, A.T. Coastal erosion along the Caribbean coast of Colombia: Magnitudes, causes and management. Ocean Coast. Manag. 2015, 114, 129–144. [Google Scholar] [CrossRef]
- Thinh, N.A.; Thanh, N.N.; Tuyen, L.T.; Hens, L. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An World Heritage site, Vietnam. Environ. Dev. Sustain. 2019, 21, 2113–2124. [Google Scholar] [CrossRef]
- de Longueville, F.; Hountondji, Y.-C.; Assogba, L.; Henry, S.; Ozer, P. Perceptions of and responses to coastal erosion risks: The case of Cotonou in Benin. Int. J. Disaster Risk Reduct. 2020, 51, 101882. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Williams, A.T.; Anfuso, G. Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls. Ocean Coast. Manag. 2018, 156, 58–75. [Google Scholar] [CrossRef]
- Alcántara-Carrió, J.; Caicedo, A.; Hernández, J.C.; Jaramillo-Vélez, A.; Manzolli, R.P. Sediment bypassing from the new human-induced lobe to the ancient lobe of the Turbo Delta (Gulf of Urabá, Southern Caribbean Sea). J. Coast. Res. 2019, 35, 196–209. [Google Scholar]
- INVEMAR. Aportes Sedimentarios y Evolución Litoral de la Franja Oriental del Golfo de Urabá, zona de Turbo; INVEMAR, Ed.; INVEMAR: Santa Marta, Colombia, 2017; p. 47. [Google Scholar]
- Escobar, C.A.; Velásquez-Montoya, L. Modeling the sediment dynamics in the Gulf of Urabá, Colombian Caribbean Sea. Ocean Eng. 2018, 147, 476–487. [Google Scholar] [CrossRef]
- Molina Flórez, L.G.; Arias, A.F.O.; Díaz, L.J.O. Capacidad de transporte potencial longitudinal de sedimentos a escala intraanual en punta Yarumal, delta del río Turbo, golfo de Urabá, a partir de la simulación de un clima marítimo. Bol. Invest. Mar. Cost. 2014, 43. [Google Scholar] [CrossRef]
- INVEMAR; Antioquia, G.D.; CORPOURABA; Turbo, M.D. Estudios para Determinar las Alternativas de Solución a los Problemas de Erosión Costera del Municipio de Turbo, Departamento de Antioquia; INVEMAR, Gobernación de Antioquia, CORPOURABA y Municipio de Turbo, Eds.; INVEMAR: Santa Marta, Colombia, 2010; p. 257. [Google Scholar]
- Correa, I.D.; Vernette, G. Introducción al problema de la erosión litoral en Urabá (sector Arboletes-Turbo) costa Caribe colombiana. Bol. Invest. Mar. Cost. 2004, 33, 7–28. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, P.; Guo, Q. Measuring beach profiles along a low-wave energy microtidal coast, west-central Florida, USA. Geosciences 2016, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Chávez, V.; Lithgow, D.; Losada, M.; Silva-Casarin, R. Coastal green infrastructure to mitigate coastal squeeze. J. Infrastruct. Preserv. Resil. 2021, 2, 1–12. [Google Scholar] [CrossRef]
- Blanco-Libreros, J.F. Cambios globales en los manglares del golfo de Urabá (Colombia): Entre la cambiante línea costera y la frontera agropecuaria en expansión. Act. Biol. 2016, 38, 53–70. [Google Scholar] [CrossRef]
- Osorio, A.F.; Montoya, R.D.; Ortiz, J.C.; Peláez, D. Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Appl. Ocean Res. 2016, 56, 119–131. [Google Scholar] [CrossRef]
- Toro, V.G.; Mosquera, W.; Barrientos, N.; Bedoya, Y. Circulación oceánica del golfo de Urabá usando campos de viento de alta resolución temporal. Bol. Cient. CIOH 2019, 38, 26–35. [Google Scholar] [CrossRef]
- Arroyo-Quinto, L.M. Caracterización del Ciclo de Brisas Diurnas en el Golfo de Urabá a Partir de Resultados del Modelo Atmosférico WRF; Trabajo de grado, Universidad de Antioquia: Medellin, Colombia, 2019. [Google Scholar]
- Coates, A.G.; Collins, L.S.; Aubry, M.-P.; Berggren, W.A. The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. GSA Bull. 2004, 116, 1327–1344. [Google Scholar] [CrossRef]
- Lizarazo, S.C.; Sagiya, T.; Mora-Páez, H. Interplate coupling along the Caribbean coast of Colombia and its implications for seismic/tsunami hazards. J. South Am. Earth Sci. 2021, 110, 103332. [Google Scholar] [CrossRef]
- Taborda, M.A. Sedimentación en Manglares: Causas y Consecuencias en un Microdelta del Golfo de Urabá, Caribe Colombiano; Universidad de Alicante: Alicante, España, 2013. [Google Scholar]
- Caicedo, A.; Hernández, J. Cambios estacionales en la Dinámica Sedimentaria de las Playas desde Punta Yarumal Hasta Playa Barajas (Golfo de Urabá, Caribe Colombiano); Universidad de Antioquia: Turbo, Antioquia, 2016. [Google Scholar]
- CORPOURABA. Monitoreo de Playas para la Gestión del Riesgo Marino Costero en los Municipios de la Unidad Ambiental Costera del Darién; CORPOURABA, Ed.; CORPOURABA: Apartadó, Colombia, 2018; p. 96. [Google Scholar]
- CORPOURABA. Inventario y Diagnóstico de las Obras de Protección Costera Establecidas en los Cuatro Municipios Costeros de Jurisdicción de la Unidad Ambiental Costera del Darién en el Departamento de Antioquia; CORPOURABA, Ed.; CORPOURABA: Apartadó, Colombia, 2018; p. 96. [Google Scholar]
- Larson, M.; Kraus, N.C. Temporal and spatial scales of beach profile change, Duck, North Carolina. Mar. Geol. 1994, 117, 75–94. [Google Scholar] [CrossRef]
- Castelle, B.; Harley, M. Extreme events: Impact and recovery. In Sandy Beach Morphodynamics; Elsevier: Amsterdam, 2020; pp. 533–556. [Google Scholar]
- Botero, C.; Anfuso, M.G.; Rangel-Buitrago, N.; Correa, I. Coastal erosion monitoring in Colombia: Overview and study cases on Caribbean and Pacific coasts. In Coastal Erosion Monitoring—A Network of Regional Observatories; Cipriani, L.E., Ed.; Nuova Grafica Fiorentina: Regione Toscana, Italy, 2013; pp. 199–213. [Google Scholar]
- CORPOURABA. Uso de Vehículos Aéreos no Tripulados para Captura de Datos Geográficos del Golfo de Urabá; CORPOURABA, Ed.; CORPOURABA: Apartadó, Colombia, 2014; p. 70. [Google Scholar]
- CORPOURABA. Medición de Perfiles y Línea de Costa con Estación Total y GPS Diferencial. Monitoreo de Playas para la Gestión del Riesgo Marino Costero en los Municipios de la Unidad Ambiental Costera del Darién; CORPOURABA, Ed.; CORPOURABA: Apartadó, Colombia, 2015; p. 100. [Google Scholar]
- Rangel-Buitrago, N.; Anfuso, G.; Stancheva, M. Effects of coastal harmouring in the Bolivar department (Caribbean Sea of Colombia). Probl. Geogr. 2011, 1, 97–108. [Google Scholar]
- Arroyave-Rincón, A.; Blanco, J.F.; Taborda, A. Exportación de sedimentos desde cuencas hidrográficas de la vertiente oriental del golfo de Urabá: Influencias climáticas y antrópicas. Rev. Ingen. UdeM 2012, 11, 13–30. [Google Scholar]
- Romaña, Y.; Hernández, D. Patrones de Circulación Superficial Entre los Sistemas Costeros de Punta las Vacas y Bahía el uno, Turbo, Antioquia; Universidad de Antioquia: Turbo, Colombia, 2018. [Google Scholar]
- Escobar, C.A.; Velásquez, L.; Posada, F. Marine currents in the Gulf of Urabá, Colombian Caribbean Sea. J. Coast. Res. 2015, 31, 1363–1374. [Google Scholar] [CrossRef]
- Stancheva, M.; Marinski, J.; Peychev, V.; Palazov, A.; Stanchev, H. Long-term coastal changes of Varna Bay caused by anthropogenic influence. Geo-Eco-Marina 2011, 17, 33. [Google Scholar]
- Stancheva, M. Indicative GIS-based segmentation of the Bulgarian Black Sea coastline for risk assessment. Compt. Rend. Acad. Bulg. Sci. 2009, 62, 1311–1318. [Google Scholar]
- Rodella, I.; Corbau, C.; Simeoni, U.; Utizi, K. Assessment of the relationship between geomorphological evolution, carrying capacity and users’ perception: Case studies in Emilia-Romagna (Italy). Tour. Manag. 2017, 59, 7–22. [Google Scholar] [CrossRef]
- Williams, A.; Micallef, A. Beach Management: Principles and Practice; Routledge: Oxfordshire, UK, 2011. [Google Scholar]
- Cifuentes, A.M. Determinación de Capacidad de Carga Turística en Áreas Protegidas; 9977571295; CATIE: Turrialba, Costa Rica, 1992. [Google Scholar]
- Cooper, J.; Anfuso, G.; Del Río, L. Bad beach management: European perspectives. Geol. Soc. Am. Bull. 2009, 460, 167–179. [Google Scholar]
- Pereira, C.I.; Madrid, D.A.; Correa, I.D.; Pranzini, E.; Botero, C.M. An evaluation of human interventions in the anthropogenically disturbed Caribbean Coast of Colombia. Anthropocene 2019, 27, 100215. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; van Tussenbroek, B.I.; Guzmán-Rodríguez, L.O.; Mendoza, E.; López-Portillo, J. A Framework to Manage Coastal Squeeze. Sustainability 2020, 12, 10610. [Google Scholar] [CrossRef]
- Yanes, A.; Botero, C.M.; Arrizabalaga, M.; Vásquez, J.G. Methodological proposal for ecological risk assessment of the coastal zone of Antioquia, Colombia. Ecol. Eng. 2019, 130, 242–251. [Google Scholar] [CrossRef]
- Huang, J.; Jackson, D.W.T.; Cooper, J.A.G. Morphological Monitoring of a High Energy Beach System Using GPS and Total Station Techniques, Runkerry, Co. Antrim, Northern Ireland. J. Coast. Res. 2002, 390–398. [Google Scholar] [CrossRef] [Green Version]
- IDEAM. Cartilla de Pronósticos de Pleamares y Bajamares de la Costa Atlántica Colombiana. Available online: http://www.ideam.gov.co/web/tiempo-y-clima/cartilla-pronostico-pleamares-bajamares-costa-atlantica-colombiana (accessed on 4 May 2020).
Campaign | Date | Climatic Season | Measurements |
---|---|---|---|
1 | January 30 (2017) | Dry | Coastline and beach profiles |
2 | November 18 (2017) | Wet | Coastline and beach profiles |
3 | May 07 (2018) | Wet | Coastline and beach profiles |
4 | November 01 (2018) | Dry | Coastline and beach profiles |
5 | April 24 (2019) | Wet | Coastline and beach profiles |
6 | December 16 (2019) | Dry | Coastline and beach profiles |
7 | January (2020) | Dry | Protection structures |
Profiles | NSM (m) | EPR(m/year) | Process |
---|---|---|---|
1 | 6.7 | 3.2 | Accretion |
2 | 16.2 | 7.8 | Accretion |
3 | 29.9 | 5.8 | Accretion |
4 | −2.9 | -0.6 | Erosion |
5 | 5.0 | 1.0 | Accretion |
6 | 0.3 | 0.2 | Accretion |
7 | 7.2 | 3.5 | Accretion |
8 | 4.0 | 1.9 | Accretion |
Segment | Segment Length (m) | Number of Protection Structures | Protection Structures Length (m) | k Index |
---|---|---|---|---|
1 | 185.1 | 0 | 0 | 0 |
2 | 205.8 | 0 | 0 | 0 |
3 | 227.7 | 3 | 126.9 | 0.6 |
4 | 230.4 | 3 | 301.2 | 1.3 |
5 | 283.2 | 9 | 368.2 | 1.3 |
6 | 223.5 | 11 | 246.5 | 1.1 |
7 | 295.2 | 11 | 251.8 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinestroza-Mena, K.M.; Toro, V.G.; Londoño-Colorado, G.S.; Chávez, V.; García-Blanco, J.K.; Silva, R. Fine Spatial Scale, Frequent Morphological Monitoring of Urbanised Beaches to Improve Coastal Management. J. Mar. Sci. Eng. 2021, 9, 550. https://doi.org/10.3390/jmse9050550
Hinestroza-Mena KM, Toro VG, Londoño-Colorado GS, Chávez V, García-Blanco JK, Silva R. Fine Spatial Scale, Frequent Morphological Monitoring of Urbanised Beaches to Improve Coastal Management. Journal of Marine Science and Engineering. 2021; 9(5):550. https://doi.org/10.3390/jmse9050550
Chicago/Turabian StyleHinestroza-Mena, Kelis M., Vladimir G. Toro, Gloria S. Londoño-Colorado, Valeria Chávez, Julieth K. García-Blanco, and Rodolfo Silva. 2021. "Fine Spatial Scale, Frequent Morphological Monitoring of Urbanised Beaches to Improve Coastal Management" Journal of Marine Science and Engineering 9, no. 5: 550. https://doi.org/10.3390/jmse9050550
APA StyleHinestroza-Mena, K. M., Toro, V. G., Londoño-Colorado, G. S., Chávez, V., García-Blanco, J. K., & Silva, R. (2021). Fine Spatial Scale, Frequent Morphological Monitoring of Urbanised Beaches to Improve Coastal Management. Journal of Marine Science and Engineering, 9(5), 550. https://doi.org/10.3390/jmse9050550