Improved Velocity Estimation Method for Doppler Sonar Based on Accuracy Evaluation and Selection
Abstract
:1. Introduction
2. Methods
2.1. Autocorrelation Function of Sonar Echo
2.1.1. Narrowband Case
2.1.2. Broadband Case
2.2. Accuracy Selection Method
3. Prototype Experiment
3.1. Experiment Implementation
3.2. Water Tank Experiment
3.3. Static Ship Experiment
3.4. Moving Ship Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velasco, D.W.; Ogle, M.; Leung, P. Long range current measurement from a surface buoy in the Gulf of Mexico. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; pp. 1–10. [Google Scholar]
- Sirabahenda, Z.; St-Hilaire, A.; Courtenay, S.C.; Van Den Heuvel, M.R. Comparison of acoustic to optical backscatter continuous measurements of suspended sediment concentrations and their characterization in an agriculturally impacted river. Water 2019, 11, 981. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.P.; Marino, B.M.; Szupiany, R.N. Application of the two-ADCP technique in estuaries to characterize the suspended particulate matter transport. In Proceedings of the 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), Rio de Janeiro, Brazil, 25–27 July 2017; pp. 1–5. [Google Scholar]
- Cusi, S.; Rodriguez, P.; Pujol, N.; Pairaud, I.; Nogueras, M.; Antonijuan, J. Evaluation of AUV-borne ADCP measurements in different navigation modes. In Proceedings of the OCEANS 2017–Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–8. [Google Scholar]
- Theriault, K. Incoherent multibeam Doppler current profiler performance: Part I—Estimate variance. IEEE J. Ocean. Eng. 1986, 11, 7–15. [Google Scholar] [CrossRef]
- Zedel, L. Modeling pulse-to-pulse coherent Doppler sonar. J. Atmos. Ocean. Technol. 2008, 25, 1834–1844. [Google Scholar] [CrossRef]
- Ivić, I.R. Effects of phase coding on Doppler spectra in PPAR weather radar. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2043–2065. [Google Scholar] [CrossRef]
- Dillon, J.; Zedel, L.; Hay, A.E. On the distribution of velocity measurements from pulse-to-pulse coherent Doppler sonar. IEEE J. Ocean. Eng. 2012, 37, 613–625. [Google Scholar] [CrossRef]
- Chi, C.; Vishnu, H.; Beng, K.T.; Chitre, M. Robust resolution of velocity ambiguity for multifrequency pulse-to-pulse coherent Doppler sonars. IEEE J. Ocean. Eng. 2019, 45, 1506–1515. [Google Scholar] [CrossRef]
- Brumley, B.H.; Cabrera, R.G.; Deines, K.L.; Terray, E.A. Performance of a broad-band acoustic Doppler current profiler. IEEE J. Ocean. Eng. 1991, 16, 402–407. [Google Scholar] [CrossRef]
- Pinkel, R.; Smith, J.A. Repeat-sequence coding for improved precision of Doppler sonar and sodar. J. Atmos. Ocean. Technol. 1992, 9, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.; Xu, X.; Zhang, T.; Zhang, L.; Li, Y. Study on installation error analysis and calibration of acoustic transceiver array based on SINS/USBL integrated system. IEEE Access 2018, 6, 66923–66939. [Google Scholar]
- Sun, J.; Wang, J.; Shi, Y.; Hu, F.; Wang, X.; Yu, J.; Zhang, A. Self-noise spectrum analysis and joint noise filtering for the sea-wing underwater glider based on experimental data. IEEE Access 2020, 8, 42960–42970. [Google Scholar] [CrossRef]
- Koyama, S.; Okubo, K.; Tagawa, N. Performance comparison of signal coding method in acoustic sensing for occlusion area using super-directional sound source. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 603–606. [Google Scholar]
- Wang, Z.; Huang, S.; Wang, S.; Wang, Q.; Zhao, W. Design of electromagnetic acoustic transducer for helical Lamb wave with concentrated beam. IEEE Sens. J. 2020, 12, 6305–6313. [Google Scholar] [CrossRef]
- Chi, C.; Vishnu, H.; Beng, K.T.; Chitre, M. Utilizing orthogonal coprime signals for improving broadband acoustic Doppler current profilers. IEEE J. Ocean. Eng. 2019, 45, 1516–1526. [Google Scholar] [CrossRef]
- Jia, T.; Ho, K.C.; Wang, H.; Shen, X. Localization of a moving object with sensors in motion by time delays and Doppler shifts. IEEE Trans. Signal Process. 2020, 68, 5824–5841. [Google Scholar] [CrossRef]
- Huang, H. Estimating the calibration error-caused bias limit of moving-boat ADCP streamflow measurements. J. Hydraul. Eng. ASCE 2020, 146, 06020006. [Google Scholar] [CrossRef]
- Despax, A.; Le Coz, J.; Hauet, A.; Mueller, D.S.; Engel, F.L.; Blanquart, B.; Oberg, K.A. Decomposition of uncertainty sources in acoustic Doppler current profiler streamflow measurements using repeated measures experiments. Water Resour. Res. 2019, 55, 7520–7540. [Google Scholar] [CrossRef]
- Velasco, D.W.; Wilson, W.D.; Nylund, S.; Heitsenrether, R. Enhancing the accuracy of current profiles from surface buoy-mounted systems. In Proceedings of the 2018 OCEANS–MTS/IEEE Kobe Techno–Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–6. [Google Scholar]
- Velasco, D.W.; Nylund, S. Performance improvement for ADCPs on surface buoys. In Proceedings of the 2019 IEEE/OES Twelfth Current, Waves and Turbulence Measurement (CWTM), San Diego, CA, USA, 10–13 March 2019; pp. 1–6. [Google Scholar]
- Cui, J.; Li, Z.; Li, Q. Strong scattering targets separation based on fractional Fourier transformation in pulse-to-pulse coherent acoustical Doppler current profilers. IEEE J. Ocean. Eng. 2018, 44, 466–481. [Google Scholar] [CrossRef]
- Prieur, F.; Hansen, R.E. Theoretical improvements when using the second harmonic signal in acoustic Doppler current profilers. IEEE J. Ocean. Eng. 2012, 38, 275–284. [Google Scholar] [CrossRef]
- Chi, C.; Li, Z.; Li, Q. Design of optimal multiple phase-coded signals for broadband acoustical Doppler current profiler. IEEE J. Ocean. Eng. 2015, 41, 302–317. [Google Scholar]
- Lin, Y.; Yuan, F.; Cheng, E. Using orthogonal combined signals in broadband ADCP for improving velocity measurement. J. Mar. Sci. Eng. 2020, 8, 450. [Google Scholar] [CrossRef]
- Murray, J.J. On the Doppler bias of hyperbolic frequency modulation matched filter time of arrival estimates. IEEE J. Ocean. Eng. 2018, 44, 446–450. [Google Scholar] [CrossRef]
Correlation Delay τ | Integral Term | Amplitude of R(τ) | |
---|---|---|---|
1 | 7Tc | 21Tc | A2/4 |
2 | 14Tc | 14Tc | A2/4 |
3 | 21Tc | 7Tc | A2/4 |
Serial Number | Parameters | Values |
---|---|---|
1 | Carrier frequency | 600 kHz |
2 | System bandwidth | 50 kHz |
3 | Minimum layer thickness | 0.1 m |
4 | Velocity estimation resolution | 0.5 mm/s |
5 | Number of beam | 4 |
6 | Beam spreading | 3 degrees |
7 | Beam angle | 30 degrees |
8 | Velocity measurement range | ±5 m/s |
9 | Maximum profiling distance | 60 m |
10 | Maximum depth | 100 m |
MF Method | WT Method | Proposed Method | |
---|---|---|---|
Mean velocity (m/s) | −0.007 | −0.032 | 0.001 |
Velocity standard deviation (m/s) | 0.011 | 0.009 | 0.001 |
Beam | MF Method | WT Method | Proposed Method | |
---|---|---|---|---|
Mean velocity (m/s) | 1 | 0.053 | 0.034 | 0.027 |
2 | 0.021 | 0.019 | 0.027 | |
3 | 0.037 | 0.045 | 0.053 | |
4 | 0.063 | 0.047 | 0.044 | |
Velocity standard deviation (m/s) | 1 | 0.109 | 0.049 | 0.044 |
2 | 0.154 | 0.108 | 0.084 | |
3 | 0.142 | 0.093 | 0.074 | |
4 | 0.082 | 0.059 | 0.043 | |
Calculation time (ms) | 0.47 | 2.20 | 3.26 |
Beam | MF Method | WT Method | Proposed Method | |
---|---|---|---|---|
Mean velocity (m/s) | 1 | 0.735 | 0.815 | 0.903 |
2 | 0.203 | 0.194 | 0.201 | |
3 | −1.012 | −1.006 | −1.006 | |
4 | −0.162 | −0.151 | −0.137 | |
Velocity standard deviation (m/s) | 1 | 0.363 | 0.281 | 0.120 |
2 | 0.105 | 0.078 | 0.071 | |
3 | 0.133 | 0.101 | 0.066 | |
4 | 0.146 | 0.131 | 0.090 | |
Calculation time (ms) | 0.47 | 0.96 | 3.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Fang, S. Improved Velocity Estimation Method for Doppler Sonar Based on Accuracy Evaluation and Selection. J. Mar. Sci. Eng. 2021, 9, 576. https://doi.org/10.3390/jmse9060576
Yang Y, Fang S. Improved Velocity Estimation Method for Doppler Sonar Based on Accuracy Evaluation and Selection. Journal of Marine Science and Engineering. 2021; 9(6):576. https://doi.org/10.3390/jmse9060576
Chicago/Turabian StyleYang, Yongshou, and Shiliang Fang. 2021. "Improved Velocity Estimation Method for Doppler Sonar Based on Accuracy Evaluation and Selection" Journal of Marine Science and Engineering 9, no. 6: 576. https://doi.org/10.3390/jmse9060576
APA StyleYang, Y., & Fang, S. (2021). Improved Velocity Estimation Method for Doppler Sonar Based on Accuracy Evaluation and Selection. Journal of Marine Science and Engineering, 9(6), 576. https://doi.org/10.3390/jmse9060576