3D Physical Modeling of an Artificial Beach Nourishment: Laboratory Procedures and Nourishment Performance
Abstract
:1. Introduction
1.1. Artificial Nourishments
1.2. Physical Modeling
2. Laboratory Tests
2.1. Model Setup
2.2. Tested Scenarios
2.3. Equipment
3. Results
3.1. Hydrodynamic and Sediment Transport
3.2. Morphodynamics
4. Discussion
4.1. Sediment Transport Dynamics
4.2. Laboratory Tests Constraints
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capobianco, M.; Hanson, H.; Larson, M.; Steetzel, H.; Stive, M.J.F.; Chatelus, Y.; Karambas, T. Nourishment design and evaluation: Applicability of model concepts. Coast. Eng. 2002, 47, 113–135. [Google Scholar] [CrossRef]
- Hanson, H.; Brampton, A.; Capobianco, M.; Dette, H.H.; Hamm, L.; Laustrup, C.; Spanhoff, R. Beach nourishment projects, practices, and objectives—A European overview. Coast. Eng. 2002, 47, 81–111. [Google Scholar] [CrossRef]
- Bottin, R.R.; Earickson, J.A. Buhne Point, Humboldt Bay, California, Design for the Prevention of Shoreline Erosion, Hydraulic and Numerical Model Investigation. In Technical Report CERC84-5; Coastal Engineering Research Center, U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1984; p. 340. [Google Scholar]
- Grasso, F.; Michallet, H.; Barthélemy, E.; Certain, R. Physical modelling of intermediate cross-shore beach morphology: Transients and equilibrium states. J. Geophys. Res. 2009, 114, 15. [Google Scholar]
- Grasso, F.; Michallet, H.; Barthélemy, E. Experimental simulation of shoreface nourishments under storm events: A morphological, hydrodynamic, and sediment grain size analysis. Coast. Eng. 2011, 58, 184–193. [Google Scholar] [CrossRef]
- Dette, H.H.; Larson MMurphy, J.; Newe, J.; Peters, K.; Reniers, A.; Steetzel, H. Application of prototype flume tests for beach nourishment assessment. Coast. Eng. 2002, 47, 137–177. [Google Scholar] [CrossRef]
- Grasso, F.; Michallet, H.; Barthélemy, E. Sediment transport associated with morphological beach changes forced by irregular asymmetric, skewed waves. J. Geophys. Res. 2011, 116, 12. [Google Scholar] [CrossRef] [Green Version]
- Michallet, H.; Castelle, B.; Barthélemy, E.; Berni, C.; Bonneton, P. Physical modeling of three-dimensional intermediate beach morphodynamics. J. Geophys. Res. Earth Surf. 2013, 118, 1045–1059. [Google Scholar] [CrossRef]
- Headland, J.; Smith, W.G.; Kotulak, P.; Alfageme, S. Coastal Protection Methods. In Handbook of Coastal Engineering; J. B. Herbich & McGraw-Hill: London, UK, 1999; pp. 1–66. [Google Scholar]
- Tondello, M.; Ruol, P.; Sclavo, M.; Capobianco, M. Model tests for evaluating beach nourishment performance. In Proceedings of the 26th International Conference on Coastal Engineering, Copenhagen, Denmark, 22–24 June 1998. [Google Scholar]
- Van Duin, M.; Wiersma, N.; Walstra, D.; Van Rijnand, L.; Stive, M. Nourishing the shoreface: Observations and hindcasting of the Egmond case, The Netherlands. Coast. Eng. 2004, 51, 813–837. [Google Scholar] [CrossRef]
- Grunnet, N.; Ruessink, B.; Walstra, D. The influence of tides, wind and waves on the redistribution of nourished sediment at Terschelling, The Netherlands. Coast. Eng. 2005, 52, 617–631. [Google Scholar] [CrossRef]
- USACE. V-4 Beach Fill Design; USACE: Vicksburg, MS, USA, 2008; Volume 1100, p. 113. [Google Scholar]
- van Heuvel, T. Sand Nourishment: A Flexible and Resilient, Adaptive Coastal Defence Measure; Climate of Coastal Cooperation: Amsterdam, The Netherlands, 2011; 7p. [Google Scholar]
- González, M.; Medina, R.; Losada, M. On the design of beach nourishment projects using static equilibrium concepts: Application to the Spanish coast. Coast. Eng. 2010, 57, 227–240. [Google Scholar] [CrossRef]
- Verhagen, H.J. Method for Artificial Beach Nourishment. In Proceedings of the 23rd Coastal Engineering Proceedings, Venice, Italy, 4–9 October 1992. [Google Scholar]
- Hughes, S.A. Physical Models and Laboratory Techniques in Coastal Engineering; World Scientific: Singapore, 1993; 570p. [Google Scholar]
- Bayram, A.; Larson, M.; Miller, H.C.; Kraus, N.C. Cross-shore Distribution of Longshore Sediment Transport: Comparison between Predictive Formulas and Field Measurements. Coast. Eng. 2001, 44, 79–99. [Google Scholar] [CrossRef]
- Wang, P.; Ebersole, B.A.; Smith, E.R. Longshore Sand—Initial Results from Large-Scale Sediment Transport Facility, No. ERDC/CHL-CHETN-II-46; Engineering and Development Center: Vicksburg, MS, USA, 2002; 12p. [Google Scholar]
- Silva, R. Avaliação Experimental e Numérica de Parâmetros Associados a Modelos de Evolução Da linha de Costa. Ph.D. Thesis, Civil Engineering Department, University of Porto, Porto, Portugal, 2010. [Google Scholar]
- Guimarães, A.; Lima, M.; Coelho, C.; Silva, R.; Veloso-Gomes, F. Groin impacts on updrift morphology: Physical and numerical study. Coast. Eng. 2016, 109, 63–75. [Google Scholar] [CrossRef]
- Vera-Cruz, D. Artificial Nourishment of Copacabana Beach. In Proceedings of the 13th Intl. Conference on Coastal Engineering, Vancouver, BC, Canada, 10–14 October 1972. [Google Scholar]
- Johnson, B.D.; Smith, E.R. Material placement in the nearshore: Laboratory and numerical model investigation. In Proceedings of the 33rd Conference on Coastal Engineering, Santander, Spain, 1–6 July 2012. [Google Scholar]
- Smith, E.R.; Mohr, M.C.; Chader, S.A. Laboratory experiments on beach change due to nearshore mound placement. Coast. Eng. 2017, 121, 119–128. [Google Scholar] [CrossRef]
- Dean, R.G. Equilibirum Beach Profiles: Characteristics and Applications. J. Coast. Res. 1991, 7, 53–84. [Google Scholar]
- Roberts, T.M.; Wang, P.; Kraus, N.C. Limits of beach and dune erosion in Response to Wave Runup Elucidated from SUPERTANK; Coastal Sediments ’07; ASCE: Reston, VA, USA, 2007. [Google Scholar]
- Sontek. Sontek ADVField Acoustic Doppler Velocimeter-Tecnhical Documentation; Sontek: San Diego, CA, USA, 2001. [Google Scholar]
- Cea, L.; Puertas, J.; Pena, L. Velocity measurements on highly turbulent free surface flow using ADV. Exp. Fluids 2007, 42, 333–348. [Google Scholar] [CrossRef]
- Carrilho, A. Morfodinâmica e Transporte Sedimentar Longitudinal na Praia de Mira. Master’s Thesis, Civil Engineering Department, University of Aveiro, Aveiro, Portugal, 2013. [Google Scholar]
- Marino-Tapia, I.; Russell, P.; O’Hare, T.; Davidson, M.; Huntley, D. Cross-shore sediment transport on natural beaches and its relation to sandbar migration patterns: 1. Field observations and derivation of a transport parameterization. J. Geophysical. Res. 2007, 112, C03001. [Google Scholar] [CrossRef]
- Klein, A.H.F.; Miot da Silva, G.; Ferreira, Ó.; Dias, J.A. Beach sediment distribution for a headland bay coast. J. Coast. Res. 2004, SI, 285–293. [Google Scholar]
- Bosboom, J.; Stive, M. Coastal Dynamics I; Lecture Notes CIE4305 Division of Hydraulic and Geotechnical Engineering Delft; Hydraulic Engineering Section, Delft Academic Press: Delft, The Netherlands, 2015. [Google Scholar]
- Wang, P.; Ebersole, B.A.; Smith, E.R. Beach-Profile Evolution under Spilling and Plunging Breakers. J. Waterw. Port Coast. Ocean Eng. 2003, 129, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Aagaard, T.; Greenwodd, B.; Hughes, M. Sediment transport on dissipative, intermediate and reflective beaches. Earth-Sci. Rev. 2013, 124, 32–50. [Google Scholar] [CrossRef]
- Crosato, A.; Desta, F.B.; Cornelisse, J.; Schuurman, F.; Uijttewaal, W.S. Experimental and numerical findings on the long-term evolution of migrating alternate bars in alluvial channels. Water Resour. Res. 2012, 48, 14. [Google Scholar] [CrossRef] [Green Version]
- Crosato, A. Issues in Laboratory Experiments of River Morphodynamics; RCEM: Padova, Italy, 2017. [Google Scholar]
- Molfetta, M.G.; Bruno, M.F.; Pratola, L.; Rinaldi, A.; Morea, A.; Preziosa, G.; Pasquali, D.; Di Risio, M.; Mossa, M. A Sterescopic System to Measure Water Waves in Laboratories. Remote Sens. 2020, 12, 2288. [Google Scholar] [CrossRef]
Funnels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Distance to the initial shoreline (m) | 2.92 | 2.42 | 1.92 | 1.42 | 0.42 |
Maximum Positive | Maximum Negative | Average | ||||
---|---|---|---|---|---|---|
Scenario | Longshore | Cross-Shore | Longshore | Cross-Shore | Longshore | Cross-Shore |
A.1 | 4.46 | 11.42 | −9.92 | −14.39 | −0.23 | 0.35 |
A.2 | 7.68 | 17.36 | −6.66 | −15.49 | 0.08 | 0.98 |
Time Interval (min) | Erosion (m3) | Accretion (m3) | Balance (m3) |
---|---|---|---|
0–1200 | 1.06 | 0.03 | −1.03 |
1200–1590 (A.1) | 0.37 | 0.02 | −0.35 |
1590 (A.1)–1590 (A.2) | 0.00 | 2.56 | +2.56 |
1590 (A.2)–2790 | 2.58 | 0.00 | −2.58 |
1590 (A.1)–2790 | 0.06 | 0.03 | −0.03 |
Total | 4.07 | 2.64 | −1.43 |
Profile | Scenario A.1 | Scenario A.2 |
---|---|---|
P1 | 0.21 | 0.14 |
P2 | 0.02 | 0.26 |
P3 | 0.06 | 0.29 |
P4 | 0.18 | 0.14 |
P5 | 0.21 | 0.04 |
P6 | 0.00 | 0.06 |
P7 | 0.24 | 0.06 |
Average | 0.13 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, A.; Coelho, C.; Veloso-Gomes, F.; Silva, P.A. 3D Physical Modeling of an Artificial Beach Nourishment: Laboratory Procedures and Nourishment Performance. J. Mar. Sci. Eng. 2021, 9, 613. https://doi.org/10.3390/jmse9060613
Guimarães A, Coelho C, Veloso-Gomes F, Silva PA. 3D Physical Modeling of an Artificial Beach Nourishment: Laboratory Procedures and Nourishment Performance. Journal of Marine Science and Engineering. 2021; 9(6):613. https://doi.org/10.3390/jmse9060613
Chicago/Turabian StyleGuimarães, André, Carlos Coelho, Fernando Veloso-Gomes, and Paulo A. Silva. 2021. "3D Physical Modeling of an Artificial Beach Nourishment: Laboratory Procedures and Nourishment Performance" Journal of Marine Science and Engineering 9, no. 6: 613. https://doi.org/10.3390/jmse9060613
APA StyleGuimarães, A., Coelho, C., Veloso-Gomes, F., & Silva, P. A. (2021). 3D Physical Modeling of an Artificial Beach Nourishment: Laboratory Procedures and Nourishment Performance. Journal of Marine Science and Engineering, 9(6), 613. https://doi.org/10.3390/jmse9060613