Inversion of the Degradation Coefficient of Petroleum Hydrocarbon Pollutants in Laizhou Bay
Abstract
:1. Introduction
2. Model and Methodology
2.1. Model Equation
2.2. Adjoint Model
2.3. Independent Point Scheme
2.4. Model Settings and Observation Data
2.5. Hydrodynamic Background Field
3. Ideal Twin Experiments
3.1. The Process of Ideal Twin Experiments
3.2. Results of the Ideal Twin Experiment
3.2.1. Influence of the Initial Estimate Value on Simulated Results
3.2.2. Results Analysis
4. Practical Experiments
4.1. Simulation of the Initial Field of Petroleum Hydrocarbon Pollutants
4.2. Analysis of Practical Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xing, Q.; Meng, R.; Lou, M.; Bing, L.; Liu, X. Remote Sensing of Ships and Offshore Oil Platforms and Mapping the Marine Oil Spill Risk Source in the Bohai Sea. Aquat. Procedia 2015, 3, 127–132. [Google Scholar] [CrossRef]
- Walsh, J.; Lenes, J.; Darrow, B.; Parks, A.; Weisberg, R.; Zheng, L.; Hu, C.; Barnes, B.; Daly, K.; Shin, S.-I.; et al. A simulation analysis of the plankton fate of the Deepwater Horizon oil spills. Cont. Shelf Res. 2015, 107, 50–68. [Google Scholar] [CrossRef]
- Makri, P.; Stathopoulou, E.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Skilodimou, H.D.; Bathrellos, G.D.; Antonarakou, A.; Scoullos, M. The Environmental Impact of a Complex Hydrogeological System on Hydrocarbon-Pollutants’ Natural Attenuation: The Case of the Coastal Aquifers in Eleusis, West Attica, Greece. J. Mar. Sci. Eng. 2020, 8, 1018. [Google Scholar] [CrossRef]
- Paul, J.H.; Hollander, D.; Coble, P.; Daly, K.L.; Murasko, S.; English, D.; Basso, J.; Delaney, J.; McDaniel, L.; Kovach, C.W. Toxicity and Mutagenicity of Gulf of Mexico Waters During and After the Deepwater Horizon Oil Spill. Environ. Sci. Technol. 2013, 47, 9651–9659. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chua, V.P. A numerical study on land-based pollutant transport in Singapore coastal waters with a coupled hydrologic-hydrodynamic model. J. Hydro-Environ. Res. 2017, 14, 119–142. [Google Scholar] [CrossRef]
- Snyder, K.; Mladenov, N.; Richardot, W.; Dodder, N.; Nour, A.; Campbell, C.; Hoh, E. Persistence and photochemical transformation of water soluble constituents from industrial crude oil and natural seep oil in seawater. Mar. Pollut. Bull. 2021, 165, 112049. [Google Scholar] [CrossRef]
- Chen, C.S.; Liu, H.D.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Wang, S.-D.; Shen, Y.-M.; Guo, Y.-K.; Tang, J. Three-dimensional numerical simulation for transport of oil spills in seas. Ocean Eng. 2008, 35, 503–510. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Shi, X.; Li, K.; Ding, D. Environmental capacity of chemical oxygen demand in the Bohai Sea: Modeling and calculation. Chin. J. Oceanol. Limnol. 2011, 29, 46–52. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, H.; Xu, Y.; Feng, S. An adjoint data assimilation approach for estimating parameters in a three-dimensional ecosystem model. Ecol. Model. 2005, 186, 235–250. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, C.H.; Lv, X.Q. Estimation of the Parameters in a Dynamical Marine Ecosystem Model Based on the Adjoint Assimilation. Appl. Mech. Mater. 2013, 321–324, 2419–2423. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Lv, X. Numerical Study on Initial Field of Pollution in the Bohai Sea with an Adjoint Method. Math. Probl. Eng. 2013, 2013, 104591. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Liu, A.; Wang, S.; Lin, F.; Zheng, L. Concentration level, distribution model, source analysis, and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from laizhou bay, China. Mar. Pollut. Bull. 2020, 150, 110690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yu, G.; Wang, F.; Li, B.; Han, H.; Qi, Z.; Wang, T.; Qi, Z. Terrestrial dissolved organic carbon consumption by heterotrophic bacterioplankton in the Huanghe River estuary during water and sediment regulation. J. Oceanol. Limnol. 2018, 37, 1062–1070. [Google Scholar] [CrossRef]
- Hu, N.J.; Shi, X.F.; Huang, P.; Liu, J.H. Polycyclic aromatic hydrocarbons in surface sediments of Laizhou Bay, Bohai Sea, China. Environ. Earth Sci. 2010, 63, 121–133. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, X.; Lv, X. Application of Dynamically Constrained Interpolation Methodology to the Surface Nitrogen Concentration in the Bohai Sea. Int. J. Environ. Res. Public Health 2019, 16, 2400. [Google Scholar] [CrossRef] [Green Version]
- Zong, X.; Xu, M.; Xu, J.; Lv, X. Improvement of the ocean pollutant transport model by using the surface spline interpolation. Tellus A Dyn. Meteorol. Oceanogr. 2018, 70, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Zhang, J. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Cont. Shelf Res. 2006, 26, 1905–1923. [Google Scholar]
- Pan, H.; Guo, Z.; Lv, X. Inversion of Tidal Open Boundary Conditions of the M2 Constituent in the Bohai and Yellow Seas. J. Atmos. Ocean. Technol. 2017, 34, 1661–1672. [Google Scholar] [CrossRef]
- Fan, W.; Lv, X. Data assimilation in a simple marine ecosystem model based on spatial biological parameterizations. Ecol. Model. 2009, 220, 1997–2008. [Google Scholar] [CrossRef]
- Ding, Y.; Bao, X.; Yao, Z.; Song, D.; Song, J.; Gao, J.; Li, J. Effect of coastal-trapped waves on the synoptic variations of the Yellow Sea Warm Current during winter. Cont. Shelf Res. 2018, 167, 14–31. [Google Scholar] [CrossRef]
- Foreman, M.G.G.; Henry, R.F.; Walters, R.A.; Ballantyne, V.A. A finite element model for tides and resonance along the north coast of British Columbia. J. Geophys. Res. Space Phys. 1993, 98, 2509–2531. [Google Scholar] [CrossRef]
Tide Stations | Diff | SS | CC | |||
---|---|---|---|---|---|---|
M2 | S2 | K1 | O1 | |||
Longkou | 0.035 | 0.018 | 0.024 | 0.018 | 0.92 | 0.96 |
Weifang | 0.049 | 0.027 | 0.011 | 0.022 | 0.94 | 0.97 |
Station | SS | CC | ||
---|---|---|---|---|
U | V | U | V | |
C2 neap | 0.29 | 0.91 | 0.73 | 0.92 |
C3 neap | 0.82 | 0.90 | 0.91 | 0.95 |
C4 neap | 0.88 | 0.67 | 0.92 | 0.89 |
C5 neap | 0.87 | 0.79 | 0.91 | 0.91 |
C6 neap | 0.63 | 0.90 | 0.87 | 0.94 |
C2 spring | 0.62 | 0.96 | 0.82 | 0.95 |
C3 spring | 0.85 | 0.93 | 0.94 | 0.93 |
C5 spring | 0.86 | 0.70 | 0.91 | 0.91 |
C6 spring | 0.80 | 0.58 | 0.90 | 0.91 |
Initial Guess Value | MAE_TPH (mg/m3) | MAE_R (h−1) |
---|---|---|
0.00 | 0.16 | 2.97 × 10−3 |
0.03 × 10−1 | 0.19 | 3.15 × 10−3 |
0.05 × 10−1 | 0.25 | 3.25 × 10−3 |
0.01 | 0.36 | 3.86 × 10−3 |
0.02 | 0.66 | 5.89 × 10−3 |
0.05 | 1.66 | 1.33 × 10−2 |
0.08 | 3.35 | 2.46 × 10−2 |
0.10 | 4.21 | 3.19 × 10−2 |
Percent Errors | Initial Value of MAE_TPH (mg/m3) | Final Value of MAE_TPH (mg/m3) | Initial Value of MAE_R (h−1) | Final Value of MAE_R (h−1) | Decline Percent of MAE_R |
---|---|---|---|---|---|
0% | 18.37 | 0.13 | 2.56 × 10−2 | 2.97 × 10−3 | 88.40% |
5% | 18.37 | 1.35 | 2.56 × 10−2 | 4.19 × 10−3 | 83.63% |
10% | 18.37 | 2.21 | 2.56 × 10−2 | 5.83 × 10−3 | 77.23% |
20% | 18.37 | 3.41 | 2.56 × 10−2 | 8.10 × 10−3 | 68.36% |
Percent Errors | Initial Value of MAE_TPH (mg/m3) | Final Value of MAE_TPH (mg/m3) | Decline Percent of MAE_TPH |
---|---|---|---|
0% | 52.69 | 11.39 | 78.38% |
5% | 52.69 | 11.99 | 77.24% |
10% | 52.69 | 13.91 | 73.60% |
20% | 52.69 | 19.46 | 63.07% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Han, H.; Li, X.; Song, D.; Shi, W.; Zhang, S.; Lv, X. Inversion of the Degradation Coefficient of Petroleum Hydrocarbon Pollutants in Laizhou Bay. J. Mar. Sci. Eng. 2021, 9, 655. https://doi.org/10.3390/jmse9060655
Huang S, Han H, Li X, Song D, Shi W, Zhang S, Lv X. Inversion of the Degradation Coefficient of Petroleum Hydrocarbon Pollutants in Laizhou Bay. Journal of Marine Science and Engineering. 2021; 9(6):655. https://doi.org/10.3390/jmse9060655
Chicago/Turabian StyleHuang, Shengmao, Haiwen Han, Xiuren Li, Dehai Song, Wenqi Shi, Shufang Zhang, and Xianqing Lv. 2021. "Inversion of the Degradation Coefficient of Petroleum Hydrocarbon Pollutants in Laizhou Bay" Journal of Marine Science and Engineering 9, no. 6: 655. https://doi.org/10.3390/jmse9060655
APA StyleHuang, S., Han, H., Li, X., Song, D., Shi, W., Zhang, S., & Lv, X. (2021). Inversion of the Degradation Coefficient of Petroleum Hydrocarbon Pollutants in Laizhou Bay. Journal of Marine Science and Engineering, 9(6), 655. https://doi.org/10.3390/jmse9060655