Extreme Meteorological Events in a Coastal Lagoon Ecosystem: The Ria de Aveiro Lagoon (Portugal) Case Study
Abstract
:1. Introduction
2. The Study Area
3. Material and Methods
3.1. The Model
3.2. The Baseline Situation and the Definition of the Scenarios
4. Results
4.1. The Baseline/Reference Situation (BS) and the Dry Summer Scenario (SC1)
4.2. The Wet Summer Situation (SC2)
4.3. The Taylor Diagram for the Scenarios
5. Discussion
The Scenarios
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
SLR: MSLR | Sea-level rise, mean sea-level rise |
EWEs | Extreme weather events |
IN | Inorganic nitrogen |
PC | Phytoplankton carbon |
BS | Baseline simulation |
References
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. 2017, 372, 20160135. [Google Scholar] [CrossRef]
- Herring, S.C.; Hoerling, M.P.; Kossin, J.P.; Peterson, T.C.; Stott, P.A. Explaining extreme events of 2014 from a climate perspective. Bull. Am. Meteorol. Soc. 2015, 96, S1–S172. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein-Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extreme of temperature and precipitation. J. Geoph. Res. 2006, 111, DO5109. [Google Scholar] [CrossRef] [Green Version]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, S.; Xavier, P.X. Increasing trend of extreme rain events over India in a warming environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.L.; Bradley, R.S. Variation of twentieth-century temperature and precipitation extreme indicators in the Northeast United States. J. Clim. 2007, 20, 5401–5417. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W.; Peterson, T.C.; Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 2008, 21, 2283–2296. [Google Scholar] [CrossRef]
- Keenlyside, N.S.; Latif, M.; Jungclaus, J.; Kornblueh, L.; Roeckner, E. Advancing decadal-scale climate prediction in the North Atlantic Sector. Nature 2008, 453, 84–88. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stockerp, T.F., Dahe, Q., Dokken, D.J., Ebi, K.R.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Stott, P. How climate change affects extreme weather events. Science 2016, 352, 1517–1518. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1216. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [Green Version]
- Le Bars, D. Uncertainty in sea level rise projections due to the dependence between contributors. Earths Future 2018, 6, 1275–1291. [Google Scholar] [CrossRef]
- Nauels, A.; Malte Meinshausen, M.; Mengel, M.; Lorbacher, K.; Wigley, T.M.L. Synthesizing long-term sea level rise projections—The MAGICC sea level model. Geoscientific model development discussions. Geosci. Model. Dev. 2017, 10, 2495–2524. [Google Scholar] [CrossRef] [Green Version]
- Pickering, M.; Horsburgh, K.J.; Blundell, J.R.; Hirschi, J.J.M.; Nicholls, R.J.; Verlaan, M.; Wells, N.C. The impact of future sea-level rise on the global tides. Cont. Shelf Res. 2017, 142, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Idier, D.; Paris, F.; Le Cozannet, G.; Boulahya, F.; Dumas, F. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 2017, 137, 56–71. [Google Scholar] [CrossRef]
- Antunes, C.; Taborda, R. Sea level at cascais tide gauge: Data, analysis and results. J. Coast. Res. 2009, 56, 218–222. [Google Scholar]
- Lopes, C.L.; Silva, P.A.; Dias, J.M.; Rocha, A.; Picado, A.; Plecha, S.; Fortunato, A.B. Local sea level change scenarios for the end of the 21St century and potential physical impacts in the lower Ria de Aveiro (Portugal). Cont. Shelf Res. 2011, 31, 1515–1526. [Google Scholar] [CrossRef]
- Cid, A.; Menéndez, M.; Castanedo, S.; Abascal, A.J.; Méndez, F.J.; Medina, R. Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe. Clim. Dyn. 2015, 14. [Google Scholar] [CrossRef]
- IPCC. Climate change: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 976. [Google Scholar]
- Kumbier, K.; Carvalho, R.C.; Woodroffe, C.D. Modelling Hydrodynamic Impacts of Sea-Level Rise on Wave-Dominated Australian Estuaries with Differing Geomorphology. J. Mar. Sci. Eng. 2018, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Yunzhu, Y.; Karunarathna, H.; Reeve, D.E. Numerical modelling of hydrodynamic and morphodynamic response of a meso-tidal estuary inlet to the impacts of global climate variabilities. Mar. Geol. 2019, 407, 229–247. [Google Scholar]
- Yuan, B.; Sun, J.; Lin, B.; Zhang, F. Long-term morphodynamics of a large estuary subject to decreasing sediment supply and sea level rise. Glob. Planet. Chang. 2020, 191, 103212. [Google Scholar] [CrossRef]
- Grases, A.; Gracia, V.; García-León, M.; Lin-Ye, J.; Sierra, J.P. Coastal Flooding and Erosion under a Changing Climate: Implications at a Low-Lying Coast (Ebro Delta). Water 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Quesada, M.C.C.; García-Lafuente, J.; Garel, E.; Cabello, J.D.; Martins, F.; Moreno-Navas, J. Effects of tidal and river discharge forcings on tidal propagation along the Guadiana Estuary. J. Sea Res. 2019, 146, 1–13. [Google Scholar] [CrossRef]
- Bird, E.C.F. Physical setting and geomorphology of coastal lagoons. In Coastal Lagoon Processes; Kjerfve, B., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; Volume 2, pp. 9–40. [Google Scholar]
- Vargas, C.I.C.; Vaz, N.; Dias, J.M. An evaluation of climate change effects in estuarine salinity patterns: Application to Ria de Aveiro shallow water system. Estuar. Coast. Shelf Sci. 2017, 189, 33–45. [Google Scholar] [CrossRef]
- Smith, M.D. The ecological role of climate extremes: Current understanding and future. J. Ecol. 2011, 99, 656–663. [Google Scholar] [CrossRef]
- Blintz, J.C.; Nixon, S.; Buckley, B.; Granger, S. Impacts of temperature and nutrients on coastal lagoon plant communities. Estuaries 2003, 26, 765–776. [Google Scholar] [CrossRef]
- Conley, D.J.; CarStensen, G.; Aertebjerg, P.B.; ChriStensen, T.; Dalsgaard, J.L.S.; Josefson, A.B. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 2007, 17, S165–S184. [Google Scholar] [CrossRef]
- Oviatt, C.A. The changing ecology of temperate coastal waters during a warming trend. Estuaries 2004, 27, 895–904. [Google Scholar] [CrossRef]
- Mackenzie, B.R.; Gislason, H.; Möllmann, C.; KöSter, F.W. Impact of 21St century climate change on the Baltic Sea fish community and fisheries. Global. Chang. Biol. 2007, 13, 1348–1367. [Google Scholar] [CrossRef]
- Lloret, J.; Marín, A.; Marín-Guirao, L. Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuar. Coast. Shelf Sci. 2008, 78, 403–412. [Google Scholar] [CrossRef]
- Moore, M.V.; Pace, M.L.; Mather, J.R.; Murdoch, P.S.; Howarth, R.W.; Folt, C.L.; Driscoll, C.T. Potential effects of climate change on freshwater ecosystems of the New England/Mid Atlantic region. Hydrol. Process. 1997, 11, 925–947. [Google Scholar] [CrossRef]
- Lopes, C.L.; Azevedo, A.; Dias, J.M. Flooding assessment under sea level rise scenarios: Ria de Aveiro case study. J. Coast. Res. 2013, 65, 766–771. [Google Scholar] [CrossRef]
- Lopes, C.L.; Dias, J.M. Assessment of flood hazard during extreme sea levels in a tidally dominated lagoon. Nat. Hazards 2015, 77, 1345–1364. [Google Scholar] [CrossRef]
- Lopes, C.L.; Alves, F.L.; Dias, J.M. Flood risk assessment in a coastal lagoon under present and future scenarios: Ria de Aveiro case Study. Nat. Hazards 2017, 89, 1307–1325. [Google Scholar] [CrossRef]
- Lopes, C.L.; Dias, J.M. Tidal dynamics in a changing lagoon: Flooding or not flooding the marginal regions. Estuar. Coast. Shelf Sci. 2015, 167, 14–24. [Google Scholar] [CrossRef]
- Génio, L.; Sousa, A.; Vaz, N.; Dias, J.M.; Barroso, C. Effect of low salinity on the survival of recently hatched veliger of Nassarius reticulatus (L.) in estuarine habitats: A case study of Ria de Aveiro. J. Sea Res. 2008, 59, 133–143. [Google Scholar] [CrossRef]
- Lopes, J.F.; Lopes, C.L.; Dias, J.M. Climate Change Impact in the Ria de Aveiro Lagoon Ecosystem: A Case Study. J. Mar. Sci. Eng. 2019, 7, 352. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.M. Contribution to the Study of the Ria de Aveiro Hydrodynamics. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2001; p. 288. [Google Scholar]
- Dias, J.M.; Lopes, J.F.; Dekeyser, I. Hydrological characterisation of Ria de Aveiro lagoon, Portugal, in early summer. Oceanol. Acta 1999, 22, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.M.; Lopes, J.F.; Dekeyser, I. Lagrangian transport of particles in Ria de Aveiro lagoon, Portugal. Phys. Chem. Earth B 2001, 26, 729–734. [Google Scholar] [CrossRef]
- Vicente, C.M. Caracterização Hidráulica e Aluvionar da Ria de Aveiro, Utilização de Modelos Hidráulicos no Estudo de Problemas da Ria. Jormadas Da Ria De Aveiro 1985, 3, 41–58. [Google Scholar]
- Fortunato, A.B.; Rodrigues, M.; Dias, J.M.; Lopes, C.; Oliveira, A. Generating inundation maps for a coastal lagoon: A case study in the Ria de Aveiro (Portugal). Ocean Eng. 2013, 64, 60–71. [Google Scholar] [CrossRef]
- Vaz, L.; Plecha, S.; Dias, J.M. Coastal wave regime influence on Ria de Aveiro inlet dynamics. J. Coast. Res. 2013, 65, 1605–1610. [Google Scholar] [CrossRef]
- ModelRia. Modelação da Qualidade da Água na Laguna da Ria de Aveiro; Final Report; Instituto Superior Técnico—Centro de Ambiente e Tecnologias Marítimos and Hidromod, Universidade de Aveiro-Centro das Zonas CoSteiras e do Mar: Aveiro, Portugal, 2003. [Google Scholar]
- Rodrigues, M.; Oliveira, A.; Queiroga, H.; Fortunato, A.; Zhang, Y. Three-dimensional modeling of the lower trophic levels in the Ria de Aveiro (Portugal). Ecol. Model. 2009, 220, 1274–1290. [Google Scholar] [CrossRef]
- Almeida, M.A.; Cunha, M.A.; Alcântar, F. Relationship of bacterioplankton production with primary production and respiration in a shallow estuarine system, Ria de Aveiro, NW Portugal. Microbiol. Res. 2005, 160, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.B.; Lillebo, A.I.; Dias, J.M.; Pereira, E.; Vale, C.; Duarte, A.C. Nutrient dynamics and seasonal succession of phytoplankton assemblages in a Southern European Estuary: Ria de Aveiro, Portugal. Estuar. Coast. Shelf Sci. 2007, 71, 480–490. [Google Scholar] [CrossRef]
- Lopes, J.F.; Almeida, M.A.; Cunha, M.A. Modelling the ecological patterns of a temperate lagoon in a very wet spring season. Ecol. Model. 2010, 221, 2302–2322. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The Influence of Organisms on the Composition of Seawater; Hill, M.N., Ed.; Interscience Publisher: New York, NY, USA, 1963; pp. 26–77. [Google Scholar]
- Mike3. Hydrodynamic and Transport Module, A scientific Description, DHI Water and Environment. Denmark. 2017. Available online: http://www.dhisoftware.com (accessed on 15 April 2021).
- Mike3. Eutrophication Model, A Scientific Description, ECO Lab-A Numerical Laboratory for Ecological Modelling, DHI Water and Environment. Denmark. 2017. Available online: http://www.dhisoftware.com (accessed on 15 April 2021).
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Dias, J.M.; Lopes, J.F.; DeKeyser, I. A numerical system to study the transport properties in the Ria de Aveiro lagoon. Ocean Dyn. 2003, 53, 220–231. [Google Scholar] [CrossRef]
- Dias, J.; Lopes, J. Implementation and assessment of hydrodynamic, salt and heat transport models: The case of Ria de Aveiro Lagoon (Portugal). Environ. Model. Softw. 2006, 21, 1–15. [Google Scholar] [CrossRef]
- NAS. Attribution of Extreme Weather Events in the Context of Climate Change. National Academies of 937 Sciences, Engineering, and Medicine; National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Charria, G.; Rimmelin-Maury, P.; Goberville, E.; l’Helguen, S.; Barrier, N.; David-Beausire, C.; Cariou, T.; Grossteffan, E.; Répécaud, M.; Quéméner, L. Temperature and Salinity Changes in Coastal Waters of Western Europe: Variability. In Trends and Extreme Events. Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes; Ceccaldi, H.J., Hénocque, Y., Komatsu, T., Prouzet, P., Sautour, B., Yoshida, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 207–226. [Google Scholar] [CrossRef]
- Paerl, R.W.; Venezia, R.E.; Sanchez, J.J.; Paerl, H.W. Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Kurtay, G.; Prevost, H.J.; Stauffer, B.A. Pico- and nanoplankton communities on a near to offshore transect along the continental shelf of the northwestern Gulf of Mexico in the aftermath of Hurricane Harvey. Limnol. Oceanogr. 2021, 9999, 1–18. [Google Scholar] [CrossRef]
Stations | Salinity Wet (PSU) | Salinity Dry (PSU) | Water Temperature (°C) | |
---|---|---|---|---|
St1 | Min. | 7.8 | 32.5 | 18.5 |
Max. | 18 | 35.1 | 20.8 | |
St2 | Min. | 0.1 | 33.6 | 18.9 |
Max. | 4.8 | 34.4 | 20.2 | |
St3 | Min. | 0.6 | 32.7 | 19.6 |
Max. | 7 | 33.8 | 20.4 | |
St4 | Min. | 0.0 | 30.0 | 19.81 |
Max. | 0.0 | 30.0 | 20.6 | |
St5 | Min. | 2 | 34.1 | 18.4 |
Max. | 11 | 34.7 | 19.2 | |
St6 | Min. | 1.0 | 32.5 | 20.1 |
Max. | 11 | 34.4 | 21.0 | |
St7 | Min. | 1.0 | 29.2 | 20.2 |
Max. | 7.0 | 30.2 | 22.3 |
Stations | NI (mg L−1) | PI (mg L−1) | Si (mg L−1) | DO (mg L−1) | Chl (μg L−1) | PC (mg L−1) | |
---|---|---|---|---|---|---|---|
St1 | Min. | 0.5 | 0.01 | 0.7 | 10.0 | 0.6 | 0.1 |
Max. | 0.6 | 0.06 | 4.5 | 7.9 | 2.7 | 0.2 | |
St2 | Min. | 0.1 | 0.01 | 0.7 | 7.5 | 7.5 | 0.1 |
Max. | 0.2 | 0.06 | 7.0 | 9.5 | 9.5 | 0.2 | |
St3 | Min. | 0.2 | 0.02 | 1.6 | 7.7 | 1.2 | 0.2 |
Max. | 2.7 | 0.1 | 6.0 | 9.5 | 13.0 | 0.4 | |
St4 | Min. | 0.9 | 0.02 | 3.0 | 7.9 | 0.4 | 0.0 |
Max. | 2.0 | 0.1 | 10.0 | 8.2 | 14 | 0.4 | |
St5 | Min. | 1.2 | 0.02 | 0.7 | 8.0 | 0.8 | 0.2 |
Max. | 1.6 | 0.3 | 11.0 | 9.2 | 8.0 | 0.3 | |
St6 | Min. | 0.2 | 0.02 | 0.7 | 6.6 | 0.9 | 0.2 |
Max. | 3.4 | 0.09 | 10.0 | 7.2 | 15 | 0.3 | |
St7 | Min. | 0.4 | 0.02 | 0.7 | 8.1 | 0.9 | 0.1 |
Max. | 1.6 | 0.05 | 7.0 | 9.4 | 5.0 | 0.5 | |
St8 | Min. | 0.4 | 0.02 | 1.5 | 7.7 | 2.0 | 0.1 |
Max. | 1.6 | 0.05 | 4.5 | 9.3 | 4.0 | 0.2 |
Scenarios | ΔT(air) (°C) | SLR (m) | River Discharge (m3 s−1)/Salinity (PSU) | |
---|---|---|---|---|
BS | Min. | 2 | +1 | 50/0 |
SC1 | Min. | 2 | +1 | 150/0 |
SC2 | Min. | 2 | +1 | 10/0 |
Stations | Scenarios | Minimum (PSU) | Maximum (PSU) | Average (PSU) | Standard Deviation (PSU) |
---|---|---|---|---|---|
St1 | BS-SC1 | 0.0 | 0.1 | 0.0 | 0.0 |
BS-SC2 | −5.8 | −24.3 | −12.4 | 4.0 | |
St2 | BS-SC1 | −1.2 | 0.3 | −0.2 | 0.2 |
BS-SC2 | −23.8 | −33.0 | −30.0 | 2.2 | |
St3 | BS-SC1 | −19.0 | 0.0 | −0.6 | 2.2 |
BS-SC2 | −2.0 | −33.5 | −29.3 | 6.9 | |
St4 | BS-SC1 | −25.8 | 0.0 | −1.5 | 4.9 |
BS-SC2 | −0.2 | −33.9 | −28.7 | 8.8 | |
St5 | BS-SC1 | −0.0 | 0.0 | 0.0 | 0.0 |
BS-SC2 | −18.9 | −33.8 | −30.5 | 3.6 | |
St6 | BS-SC1 | −15.2 | −0.0 | −0.3 | 1.5 |
BS-SC2 | −2.7 | −27.0 | −23.6 | 3.2 | |
St7 | BS-SC1 | −9.9 | 0.0 | −1.0 | 3.3 |
BS-SC2 | −10.60 | −33.6 | −31.8 | 4.3 | |
St8 | BS-SC1 | −7.6 | 0.0 | −0.2 | 0.7 |
BS-SC2 | −17.5 | −33.5 | −31.9 | 2.1 |
Stations | Scenarios | Minimum (°C) | Maximum (°C) | Average (°C) | Standard Deviation (°C) |
---|---|---|---|---|---|
St1 | BS-SC1 | −0.72 | 0.26 | −0.27 | 0.16 |
BS-SC2 | −2.44 | 0.31 | −1.22 | 0.59 | |
St2 | BS-SC1 | −1.82 | 0.60 | −0.60 | 0.240 |
BS-SC2 | −1.18 | 1.73 | 0.39 | 0.55 | |
St3 | BS-SC1 | −2.00 | 0.21 | −0.66 | 0.40 |
BS-SC2 | −2.19 | 1.28 | −0.18 | 0.55 | |
St4 | BS-SC1 | −2.00 | 0.00 | −1.51 | 4.93 |
BS-SC2 | −3.17 | 1.55 | −0.47 | 0.50 | |
St5 | BS-SC1 | −1.13 | 0.41 | −0.30 | 0.22 |
BS-SC2 | −3.42 | 0.54 | −1.55 | 0.92 | |
St6 | BS-SC1 | −1.22 | −0.01 | −0.70 | 0.21 |
BS-SC2 | −0.63 | 1.50 | 0.45 | 0.39 | |
St7 | BS-SC1 | −1.30 | 0.35 | −0.42 | 0.27 |
BS-SC2 | −2.77 | 0.92 | −0.61 | 0.68 | |
St8 | BS-SC1 | −2.00 | 0.0526 | −0.280 | 0.41 |
BS-SC2 | −0.92 | 1.40 | 0.240 | 0.50 |
Stations | Scenarios | Minimum (mg L−1) | Maximum (mg L−1) | Average (mg L−1) | Standard Deviation (mg L−1) |
---|---|---|---|---|---|
St1 | BS-SC1 | −0.2 | 0.3 | −0.1 | 0.1 |
BS-SC2 | −3.1 | −0.6 | −1.4 | 0.4 | |
St2 | BS-SC1 | 0.6 | 2.1 | 0.3 | 0.4 |
BS-SC2 | −2.2 | 0.3 | −1.3 | 0.5 | |
St3 | BS-SC1 | −0.2 | 1.7 | 0.2 | 0.3 |
BS-SC2 | −2.6 | −0.1 | −1.5 | 0,5 | |
St4 | BS-SC1 | −0.2 | 1.9 | 0.2 | 0,3 |
BS-SC2 | −6.0 | −3.9 | −5.2 | 0.6 | |
St5 | BS-SC1 | −0.2 | 0.6 | 0.1 | 0.9 |
BS-SC2 | −6.0 | −3.5 | −5.0 | 0.6 | |
St6 | BS-SC1 | −0.1 | 1.4 | 0.2 | 0.3 |
BS-SC2 | −1.9 | −0.2 | −1.6 | 0.2 | |
St7 | BS-SC1 | −0.1 | 1.1 | 0.1 | 0.2 |
BS-SC2 | −2.0 | −0.6 | −1.7 | 0.3 | |
St8 | BS-SC1 | −0.1 | 1.4 | 0.2 | 0.2 |
BS-SC2 | −5.9 | −4.5 | −5.3 | 0.3 |
Stations | Scenarios | Minimum mg L−1 | Maximum mg L−1 | Average mg L−1 | Standard Deviation mg L−1 |
---|---|---|---|---|---|
St1 | BS-SC1 | −0.1 | 0.1 | 0.0 | 0.0 |
BS-SC2 | −0.5 | 0.0 | −0.2 | 0.1 | |
St2 | BS-SC1 | −0.1 | 0.3 | −0.1 | 0.0 |
BS-SC2 | −0.9 | −0.3 | −0.6 | 0.1 | |
St3 | BS-SC1 | −0.2 | 0.4 | −0.1 | 0.1 |
BS-SC2 | −0.9 | 0.1 | 0.5 | 0.2 | |
St4 | BS-SC1 | −0.1 | 0.6 | 0.0 | 0.1 |
BS-SC2 | −0.8 | 0.3 | −0.5 | 0.3 | |
St5 | BS-SC1 | −0.1 | 0.1 | 0.0 | 0.0 |
BS-SC2 | −0.9 | −0.2 | −0.7 | 0.2 | |
St6 | BS-SC1 | −0.2 | 0.2 | −0.1 | 0.0 |
BS-SC2 | −0.6 | 0.0 | −0.4 | 0.1 | |
St7 | BS-SC1 | −0.1 | 0.4 | 0.0 | 0.1 |
BS-SC2 | −1.2 | −0.2 | −0.9 | 0.3 | |
St8 | BS-SC1 | −0.2 | 0.2 | −0.1 | 0.0 |
BS-SC2 | −1.2 | −0.7 | −1.0 | 0.1 |
Stations | Scenarios | Minimum mg L−1 | Maximum mg L−1 | Average mg L−1 | Standard Deviation mg L−1 |
---|---|---|---|---|---|
St1 | BS-SC1 | −0.5 | −0.1 | −0.3 | 0.0 |
BS-SC2 | −1.2 | 0.0 | −0.4 | 0.1 | |
St2 | BS-SC1 | 0.0 | 0.0 | 0.0 | 0.0 |
BS-SC2 | −0.8 | 4.2 | 0.6 | 0.3 | |
St3 | BS-SC1 | −0.1 | 3.1 | 1.5 | 0.2 |
BS-SC2 | 0.1 | 6.3 | 3.2 | 0.2 | |
St4 | BS-SC1 | −3.1 | 3.2 | 0.1 | 0.1 |
BS-SC2 | −4.2 | 2.1 | −0.5 | 0.1 | |
St5 | BS-SC1 | −0.1 | 0.1 | 0.0 | 0.0 |
BS-SC2 | −2.0 | 2.6 | −0.8 | 0.2 | |
St6 | BS-SC1 | 2.1 | 0.1 | 1.0 | 0.1 |
BS-SC2 | −3.9 | −0.2 | −0.1 | 0.1 | |
St7 | BS-SC1 | −0.1 | 0.0 | 0.1 | 0.1 |
BS-SC2 | −2.1 | 0.4 | −0.1 | 0.1 | |
St8 | BS-SC1 | 0.0 | 0.1 | 0.1 | 0.0 |
BS-SC2 | −2.2 | −1.7 | −1.7 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.F.; Lopes, C.L.; Dias, J.M. Extreme Meteorological Events in a Coastal Lagoon Ecosystem: The Ria de Aveiro Lagoon (Portugal) Case Study. J. Mar. Sci. Eng. 2021, 9, 727. https://doi.org/10.3390/jmse9070727
Lopes JF, Lopes CL, Dias JM. Extreme Meteorological Events in a Coastal Lagoon Ecosystem: The Ria de Aveiro Lagoon (Portugal) Case Study. Journal of Marine Science and Engineering. 2021; 9(7):727. https://doi.org/10.3390/jmse9070727
Chicago/Turabian StyleLopes, José Fortes, Carina Lurdes Lopes, and João Miguel Dias. 2021. "Extreme Meteorological Events in a Coastal Lagoon Ecosystem: The Ria de Aveiro Lagoon (Portugal) Case Study" Journal of Marine Science and Engineering 9, no. 7: 727. https://doi.org/10.3390/jmse9070727
APA StyleLopes, J. F., Lopes, C. L., & Dias, J. M. (2021). Extreme Meteorological Events in a Coastal Lagoon Ecosystem: The Ria de Aveiro Lagoon (Portugal) Case Study. Journal of Marine Science and Engineering, 9(7), 727. https://doi.org/10.3390/jmse9070727