Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model
Abstract
:1. Introduction
2. Model Setup
3. Results
3.1. Mean Surface Circulation and Water Mass Structure
3.2. Water Mass Validation
3.3. Volume Fluxes through the Straits
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özsoy, E.; Ünlüata, Ü. Oceanography of the Black Sea: A review of some recent results. Earth-Sci. Rev. 1997. [Google Scholar] [CrossRef]
- Kara, A.B.; Wallcraft, A.J.; Hurlburt, H.E.; Stanev, E.V. Air-sea fluxes and river discharges in the Black Sea with a focus on the Danube and Bosphorus. J. Mar. Syst. 2008, 74. [Google Scholar] [CrossRef]
- Robinson, A.; Leslie, W.; Theocharis, A.; Lascaratos, A. Mediterranean Sea Circulation. In Encyclopedia of Ocean Sciences; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar] [CrossRef]
- Pinardi, N.; Zavatarelli, M.; Adani, M.; Coppini, G.; Fratianni, C.; Oddo, P.; Simoncelli, S.; Tonani, M.; Lyubartsev, V.; Dobricic, S.; et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 2015, 132. [Google Scholar] [CrossRef]
- Besiktepe Sukru, T.; Sur, H.I.; Özsoy, E.; Latif, M.A.; Oǧuz, T.; Ünlüata, Ü. The circulation and hydrography of the Marmara Sea. Prog. Oceanogr. 1994. [Google Scholar] [CrossRef]
- Ünlülata, Ü.; Oğuz, T.; Latif, M.A.; Özsoy, E. On the Physical Oceanography of the Turkish Straits. In The Physical Oceanography of Sea Straits; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar] [CrossRef]
- Jarosz, E.; Teague, W.J.; Book, J.W.; Beiktepe, T. Observations on the characteristics of the exchange flow in the Dardanelles Strait. J. Geophys. Res. Ocean 2012, 117. [Google Scholar] [CrossRef]
- Altiok, H.; Kayişoğlu, M. Seasonal and interannual variability of water exchange in the Strait of Istanbul. Mediterr. Mar. Sci. 2015, 16. [Google Scholar] [CrossRef] [Green Version]
- Özsoy, E.; Di Iorio, D.; Gregg, M.C.; Backhaus, J.O. Mixing in the Bosphorus Strait and the Black Sea continental shelf: Observations and a model of the dense water outflow. J. Mar. Syst. 2001, 31. [Google Scholar] [CrossRef]
- Johns, B.; Oguz, T. The modeling of the flow of water through the Bosphorus. Dyn. Atmos. Ocean. 1989, 14, 229–258. [Google Scholar] [CrossRef]
- Oguz, T.; Özsoy, E.; Latif, M.A.; Sur, H.I.; Ünlüata, Ü. Modeling of hydraulically controlled exchange flow in the Bosphorus Strait. J. Phys. Oceanogr. 1990, 20. [Google Scholar] [CrossRef] [Green Version]
- Ilicak, M.; Özgökmen, T.; Özsoy, E.; Fischer, P. Non-hydrostatic modeling of exchange flows across complex geometries. Ocean Model. 2009, 29. [Google Scholar] [CrossRef]
- Altiok, H.; Sur, H.I.; Yüce, H. Variation of the cold intermediate water in the Black Sea exit of the Strait of Istanbul (Bosphorus) and its transfer through the strait. Oceanologia 2012, 54. [Google Scholar] [CrossRef] [Green Version]
- Sozer, A.; Özsoy, E. Water exchange through canal Istanbul and Bosphorus strait. Mediterr. Mar. Sci. 2017, 18. [Google Scholar] [CrossRef] [Green Version]
- Demyshev, S.G.; Dovgaya, S.V.; Ivanov, V.A. Numerical modeling of the influence of exchange through the Bosporus and Dardanelles Straits on the hydrophysical fields of the Marmara Sea. Izv. Atmos. Ocean Phys. 2012, 48. [Google Scholar] [CrossRef]
- Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di Lorenzo, E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys. 2008, 227. [Google Scholar] [CrossRef]
- Chiggiato, J.; Jarosz, E.; Book, J.W.; Dykes, J.; Torrisi, L.; Poulain, P.M.; Gerin, R.; Horstmann, J.; Beşiktepe, Ş. Dynamics of the circulation in the Sea of Marmara: Numerical modeling experiments and observations from the Turkish straits system experiment. Ocean Dyn. 2012, 62, 139–159. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible navier stokes model for, studies of the ocean on parallel computers. J. Geophys. Res. C Ocean 1997, 102. [Google Scholar] [CrossRef] [Green Version]
- Sannino, G.; Sözer, A.; Özsoy, E. A high-resolution modeling study of the Turkish Straits System. Ocean Dyn. 2017, 67. [Google Scholar] [CrossRef]
- Stanev, E.V.; Grashorn, S.; Zhang, Y.J. Cascading ocean basins: Numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system. Ocean Dyn. 2017, 67. [Google Scholar] [CrossRef]
- Aydoğdu, A.; Pinardi, N.; Özsoy, E.; Danabasoglu, G.; Gürses, Ö.; Karspeck, A. Circulation of the Turkish Straits System under interannual atmospheric forcing. Ocean Sci. 2018, 14, 999–1019. [Google Scholar] [CrossRef] [Green Version]
- Umgiesser, G.; Canu, D.M.; Cucco, A.; Solidoro, C. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J. Mar. Syst. 2004, 51. [Google Scholar] [CrossRef]
- Federico, I.; Pinardi, N.; Coppini, G.; Oddo, P.; Lecci, R.; Mossa, M. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Ferrarin, C.; Davolio, S.; Bellafiore, D.; Ghezzo, M.; Maicu, F.; Mc Kiver, W.; Drofa, O.; Umgiesser, G.; Bajo, M.; De Pascalis, F.; et al. Cross-scale operational oceanography in the Adriatic Sea. J. Oper. Oceanogr. 2019, 12. [Google Scholar] [CrossRef]
- Ilicak, M.; Adcroft, A.; Griffies, S.; Hallberg, R. Spurious dianeutral mixing and the role of momentum closure. Ocean Model. 2012, 45. [Google Scholar] [CrossRef]
- Ilicak, M.; Özgökmen, T.; Peters, H.; Baumert, H.; Iskandarani, M. Performance of two-equation turbulence closures in three-dimensional simulations of the Red Sea overflow. Ocean Model. 2008, 24. [Google Scholar] [CrossRef]
- Jackett, D.R.; Mcdougall, T.J. Minimal Adjustment of Hydrographic Profiles to Achieve Static Stability. J. Atmos. Ocean. Technol. 1995, 12, 381–389. [Google Scholar] [CrossRef]
- Ciliberti, S.A.; Peneva, E.L.; Jansen, E.; Martins, D.; Cretí, S.; Stefanizzi, L.; Lecci, R.; Palermo, F.; Daryabor, F.; Lima, L.; et al. Black Sea Analysis and Forecast (CMEMS BS-Currents, EAS3 system) (Version 1)); Data Set; Copernicus Monitoring Environment Marine Service (CMEMS). 2020. Available online: https://www.cmcc.it/wp-content/uploads/2021/06/CMEMS-BS-PUM-007-001.pd (accessed on 9 July 2021).
- Clementi, E.; Pistoia, J.; Escudier, R.; Delrosso, D.; Drudi, M.; Grandi, A.; Lecci, R.; Cretí, S.; Ciliberti, S.; Coppini, G.; et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 System); Data Set; Copernicus Monitoring Environment Marine Service (CMEMS). 2019. Available online: https://www.cmcc.it/wp-content/uploads/2021/02/CMEMS-MED-PUM-006-013.pdf (accessed on 9 July 2021).
- Yang, J. The Arctic and Subarctic Ocean flux of Potential Vorticity and the Arctic Ocean circulation. J. Phys. Oceanogr. 2005, 35. [Google Scholar] [CrossRef] [Green Version]
- Gregg, M.C. Flow, water mass changes, and hydraulics in the Bosphorus. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Jarosz, E.; Teague, W.J.; Book, J.W.; Beşiktepe, Ş. Observed volume fluxes in the Bosphorus Strait. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Tuǧrul, S.; Beşiktepe, T.; Salihoǧlu, I. Nutrient exchange fluxes between the Aegean and Black Seas through the marmara sea. Mediterr. Mar. Sci. 2002, 3. [Google Scholar] [CrossRef]
Annual Mean (kmyr) | Net Transport | Upper Layer | Lower Layer |
---|---|---|---|
Northern Bosphorus | −137.52 | −457.96 | 317.64 |
Southern Bosphorus | −140.31 | −498.37 | 360.85 |
Northern Dardanelles | −176.89 | −589.97 | 413.08 |
Southern Dardanelles | −170.14 | −850.92 | 680.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilicak, M.; Federico, I.; Barletta, I.; Mutlu, S.; Karan, H.; Ciliberti, S.A.; Clementi, E.; Coppini, G.; Pinardi, N. Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model. J. Mar. Sci. Eng. 2021, 9, 769. https://doi.org/10.3390/jmse9070769
Ilicak M, Federico I, Barletta I, Mutlu S, Karan H, Ciliberti SA, Clementi E, Coppini G, Pinardi N. Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model. Journal of Marine Science and Engineering. 2021; 9(7):769. https://doi.org/10.3390/jmse9070769
Chicago/Turabian StyleIlicak, Mehmet, Ivan Federico, Ivano Barletta, Sabri Mutlu, Haldun Karan, Stefania Angela Ciliberti, Emanuela Clementi, Giovanni Coppini, and Nadia Pinardi. 2021. "Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model" Journal of Marine Science and Engineering 9, no. 7: 769. https://doi.org/10.3390/jmse9070769
APA StyleIlicak, M., Federico, I., Barletta, I., Mutlu, S., Karan, H., Ciliberti, S. A., Clementi, E., Coppini, G., & Pinardi, N. (2021). Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model. Journal of Marine Science and Engineering, 9(7), 769. https://doi.org/10.3390/jmse9070769