Flow Field Measurement of Laboratory-Scaled Cross-Flow Hydrokinetic Turbines: Part II—The Near-Wake of Twin Turbines in Counter-Rotating Configurations
Abstract
:1. Introduction
2. Materials and Methodology
3. Results and Discussion
3.1. Effect of Phase Difference
3.2. Effect of Separation Distance
3.3. Note on Effect of Relative Incoming Flow Angle
3.4. Quantitative Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MHK | Marine hydrokinetic turbine |
VAWT | Vertical axis wind turbine |
PIV | Particle image velocimetry |
References
- Dabiri, J. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J. Renew. Sustain. Energy 2011, 3, 043104. [Google Scholar] [CrossRef] [Green Version]
- Brownstein, I.D.; Wei, N.J.; Dabiri, J.O. Aerodynamically Interacting Vertical-Axis Wind Turbines: Performance Enhancement and Three-Dimensional Flow. Energies 2019, 12, 2427. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhao, P.; Stoesser, T.; Wang, K.; Zhou, L. Experimental and numerical investigation of twin vertical axis wind turbines with a deflector. Energy Convers. Manag. 2020, 209, 112588. [Google Scholar] [CrossRef]
- Li, Y.; Calisal, S. Modeling of twin-turbine systems with vertical axis tidal current turbines: Part 1—Power Output. Ocean Eng. 2010, 37, 627–637. [Google Scholar] [CrossRef]
- Li, Y.; Calisal, S. Modeling of twin-turbine systems with vertical axis tidal current turbine: Part 2—Torque Fluctuation. Ocean Eng. 2011, 38, 550–558. [Google Scholar] [CrossRef]
- Bachant, P.; Wosnik, M.; Gunawan, B.; Neary, V. Experimental study of a reference model vertical-axis cross-flow turbine. PLoS ONE 2016, 11, e0163799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachant, P.; Wosnik, M. Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency. Renew. Energy 2014, 74, 318–325. [Google Scholar] [CrossRef]
- Ross, H.; Polagye, B. An experimental assessment of analytical blockage corrections for turbines. Renew. Energy 2020, 152, 1328–1341. [Google Scholar] [CrossRef] [Green Version]
- Araya, D.; Colonius, T.; Dabiri, J. Transition to Bluff-Body Dynamics in the Wake of Vertical-Axis Wind Turbines. J. Fluid Mech. 2017, 813, 346–381. [Google Scholar] [CrossRef] [Green Version]
- Doan, M.; Kai, Y.; Obi, S. Twin Marine Hydrokinetic Cross-Flow Turbines in Counter Rotating Configurations: A Laboratory-Scaled Apparatus for Power Measurement. J. Mar. Sci. Eng. 2020, 8, 918. [Google Scholar] [CrossRef]
- Doan, M.; Kai, Y.; Takuya, K.; Obi, S. Flow Field Measurement of Laboratory-Scaled Cross-Flow Hydrokinetic Turbines: Part 1—The Near-Wake of a Single Turbine. J. Mar. Sci. Eng. 2021, 9, 489. [Google Scholar] [CrossRef]
- Araya, D.; Dabiri, O. A comparison of wake measurements in motor-driven and flow-driven turbine experiments. Exp. Fluids 2015, 56, 150. [Google Scholar] [CrossRef]
- Suryadi, A.; Ishii, T.; Obi, S. Stereo PIV measurement of a finite, flapping rigid plate in hovering condition. Exp. Fluids 2010, 49, 447–460. [Google Scholar] [CrossRef]
- Suryadi, A. The Phase-Avreaged Velocity Measurement and the Estimation of Pressure Force of a Periodically Moving Body. Ph.D. Thesis, Keio University, Yokohama, Japan, 2011. [Google Scholar]
- Doan, M.N.; Alayeto, I.H.; Kumazawa, K.; Obi, S. Computational fluid dynamic analysis of a marine hydrokinetic crossflow turbine in low Reynolds number flow. In Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, San Francisco, CA, USA, 28 July–1 August 2019; Volume 2, p. V002T02A067. [Google Scholar]
- Antonia, R.; Bisset, D.; Browne, L. Effect of Reynolds number on the topology of the organized motion in a turbulent boundary layer. J. Fluid Mech. 1990, 213, 267–286. [Google Scholar] [CrossRef]
- Kim, H.; Kline, S.; Reynolds, W. The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 1971, 15, 133–160. [Google Scholar] [CrossRef]
- Doan, M. PIV Counter Rotating Turbines; Kaggle: San Francisco, CA, USA, 2021. [Google Scholar] [CrossRef]
Forward/Backward | Separation Distance | ||||
---|---|---|---|---|---|
Forward | 1.05 | 0 | 1.25 | 0.116 | 0.263 |
Forward | 1.05 | 1.25 | 0.103 | 0.268 | |
Backward | 0.90 | 0 | 1.25 | 0.108 | 0.259 |
Backward | 0.90 | 1.25 | 0.103 | 0.264 | |
Forward | 0.95 | 1.25 | 0.120 | 0.277 | |
Forward | 0.95 | 1.00 | 0.128 | 0.227 | |
Backward | 0.75 | 1.25 | 0.097 | 0.269 | |
Backward | 0.75 | 1.00 | 0.092 | 0.357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, M.N.; Kawata, T.; Obi, S. Flow Field Measurement of Laboratory-Scaled Cross-Flow Hydrokinetic Turbines: Part II—The Near-Wake of Twin Turbines in Counter-Rotating Configurations. J. Mar. Sci. Eng. 2021, 9, 777. https://doi.org/10.3390/jmse9070777
Doan MN, Kawata T, Obi S. Flow Field Measurement of Laboratory-Scaled Cross-Flow Hydrokinetic Turbines: Part II—The Near-Wake of Twin Turbines in Counter-Rotating Configurations. Journal of Marine Science and Engineering. 2021; 9(7):777. https://doi.org/10.3390/jmse9070777
Chicago/Turabian StyleDoan, Minh N., Takuya Kawata, and Shinnosuke Obi. 2021. "Flow Field Measurement of Laboratory-Scaled Cross-Flow Hydrokinetic Turbines: Part II—The Near-Wake of Twin Turbines in Counter-Rotating Configurations" Journal of Marine Science and Engineering 9, no. 7: 777. https://doi.org/10.3390/jmse9070777
APA StyleDoan, M. N., Kawata, T., & Obi, S. (2021). Flow Field Measurement of Laboratory-Scaled Cross-Flow Hydrokinetic Turbines: Part II—The Near-Wake of Twin Turbines in Counter-Rotating Configurations. Journal of Marine Science and Engineering, 9(7), 777. https://doi.org/10.3390/jmse9070777