Analysis of Underwater Acoustic Propagation under the Influence of Mesoscale Ocean Vortices
Abstract
:1. Introduction
2. Data and Methods
2.1. AIPOcean Region and Argo Data
2.2. Vortex Identification and Extraction Based on OW Method
2.2.1. Vortex Identification Based on OW Method
- (1)
- Extraction of Argo buoy data: As the data of the Argo buoy are available in Network Common Data Form (NetCDF) format, it is necessary to use the ncread function in the Matlab [29] to extract the zonal flow velocity, meridional flow velocity, temperature and salinity required for identification.
- (2)
- Delineate the scope of calculation: The extracted zonal flow velocity and meridional flow velocity exist in the form of 3D variables of latitude, longitude and height. The surface velocity at a depth of 100 m is selected and a matrix is formed in the range of 10° × 10° for calculation.
- (3)
- Calculate the value and threshold of the q parameter: After obtaining the matrix of the zonal flow velocity u and the meridional flow velocity v, the gradient function can be used to calculate the derivatives of u and v in the x and y directions, and then Equations (1)–(4) can be used to calculate the value of q. The standard deviation function is used to calculate the threshold q0.
- (4)
- Determine the position of the center of the mesoscale vortex: After obtaining the value of q and q0, the position of the vortex center can be obtained by comparing the two values. After obtaining the position of the vortex center, the maximum value of the flow velocity in different directions can be selected as the edge estimation value using the flow velocity field in the Argo numerical product, and the average value of the distance from the vortex center can be used as the radius estimation value of the mesoscale vortex.
2.2.2. Extraction of Mesoscale Vortex Spatial Characteristics
2.3. Modeling of Mesoscale Ocean Vortex
2.3.1. Fitting of Vortex Parameters Based on Gaussian Method
2.3.2. Sound Field Modeling Based on COMSOL Finite Element Method
3. Results and Discussion
3.1. The Influence of Mesoscale Vortices on Sound Propagation
3.1.1. The Influence of Vortex Intensity on Sound Propagation
3.1.2. The Influence of Vortex Position on Sound Propagation
3.1.3. The Influence of Sound Source Frequency on Sound Propagation
4. Conclusions and Future Work
- (1)
- In a deep-sea environment where the sea surface is an absolute soft boundary and the lower seabed is a liquid seabed, the sound waves radiated by sound sources near the sea surface will reconverge at a certain distance and form a sound energy convergence zone. The cold vortex will cause the convergence zone region to move toward the sound source, reducing the width of the convergence zone; a warm vortex will cause the convergence zone region to move away from the sound source, increasing the width of the convergence zone.
- (2)
- If the sound source is in the center of the vortex, the vortex’s effect on sound propagation is more obvious, and the depth of the convergence zone is shifted downward. The reason for this is that the mesoscale vortex has the greatest impact on the sound velocity distribution at the vortex center, which has a greater impact on sound propagation. These findings also support the hypothesis that the mesoscale vortex influences sound propagation by influencing the sound velocity distribution.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wunsch, C.; Schmittner, A.; Chiang, J.C.H.; Hemming, S.R. The past and future ocean circulation from a contemporary perspective. Extrem. Events 2007, 173, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic mass transport by mesoscale eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hou, Y.; Chu, X. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Faghmous, J.H.; Frenger, I.; Yao, Y.; Warmka, R.; Lindell, A.; Kumar, V. A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data 2015, 2, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhang, R.; Liu, C.; Fan, H. Modeling of ocean mesoscale eddy and its application in the underwater acoustic propagation. Mar. Sci. Bull. 2012, 14, 1–15. [Google Scholar]
- Chen, X.; Hong, M.; Zhu, W.; Mao, K.; Ge, J.J.; Bao, S. The analysis of acoustic propagation characteristic affected by mesoscale cold-core vortex based on the UMPE model. Acoust. Aust. 2019, 47, 33–49. [Google Scholar] [CrossRef]
- Li, L.; Nowlin, W.D., Jr.; Jilan, S. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1469–1482. [Google Scholar] [CrossRef]
- Wu, P.M.; Guo, X.G.; Wu, R.S. Analyses of sound velocity field in southwest sea area off Hengchun of Taiwan. J. Oceanogr. Taiwan Strait 2001, 20, 286–290. (In Chinese) [Google Scholar]
- Available online: https://www.researchgate.net/publication/348706507_Influence_of_Mesoscale_Vortex_on_Underwater_Low-Frequency_Sound_Propagation (accessed on 22 June 2021).
- Jian, Y.; Zhang, J.; Liu, Q.; Wang, Y. Effect of Mesoscale eddies on underwater sound propagation. Appl. Acoust. 2009, 70, 432–440. [Google Scholar] [CrossRef]
- Okubo, A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 445–454. [Google Scholar] [CrossRef]
- Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D Nonlinear Phenom. 1991, 48, 273–294. [Google Scholar] [CrossRef]
- McWilliams, J.C. The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 1984, 146, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Morrow, R.; Birol, F.; Griffin, D.; Sudre, J. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Isern-Fontanet, J.; Font, J.; García-Ladona, E.; Emelianov, M.; Millot, C.; Taupier-Letage, I. Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 3009–3028. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Sadarjoen, I.A.; Post, F.H. Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graph. 2000, 24, 333–341. [Google Scholar] [CrossRef]
- Doglioli, A.M.; Blanke, B.; Speich, S.; Lapeyre, G. Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; McWilliams, J.C. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Vastano, A.C.; Owens, G.E. On the acoustic characteristics of a gulf stream cyclonic ring. J. Phys. Oceanogr. 1973, 3, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, N.L.; Zabalgogeazcoa, X. Coherent ray propagation through a Gulf Stream ring. J. Acoust. Soc. Am. 1977, 62, 888–894. [Google Scholar] [CrossRef]
- Baer, R.N. Calculations of sound propagation through an eddy. J. Acoust. Soc. Am. 1980, 67, 1180–1185. [Google Scholar] [CrossRef]
- Chen, C.; Yang, K.-D.; Ma, Y.-L.; Duan, R. Comparison of surface duct energy leakage with bottom-bounce energy of close range propagation. Chin. Phys. Lett. 2016, 33, 104302. [Google Scholar] [CrossRef]
- Heaney, K.D.; Campbell, R.L. Three-dimensional parabolic equation modeling of mesoscale eddy deflection. J. Acoust. Soc. Am. 2016, 139, 918–926. [Google Scholar] [CrossRef] [PubMed]
- COMSOL Multiphysics® v.5.6. Available online: www.comsol.com (accessed on 20 August 2019).
- Liu, Z.; Wu, X.; Xu, J.; Li, H.; Lu, S.; Sun, C.; Cao, M. China Argo project: Progress in China Argo ocean observations and data applications. Acta Oceanol. Sin. 2017, 36, 1–11. [Google Scholar] [CrossRef]
- Yan, C.; Zhu, J.; Xie, J. An ocean data assimilation system in the Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci. 2015, 32, 1460–1472. [Google Scholar] [CrossRef]
- Cui, F.J. Mesoscale Eddies in the Sound China Sea Identification and Statistical Characteristics Analysis. Master’s Thesis, Ocean University of China, Qingdao, China, 2015; pp. 20–21. [Google Scholar]
- Version R2017a, Copyright 1984–2015; The MathWorks, Inc.: Natick, MA, USA, 2017; Available online: https://jp.mathworks.com/company/newsroom/mathworks-announces-release-2017a-of-the-matlab-and-simulink-pro.html (accessed on 20 August 2019).
- MacKenzie, K.V. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am. 1981, 70, 807–812. [Google Scholar] [CrossRef]
- Henrick, R.F.; Siegmann, W.L.; Jacobson, M.J. General analysis of ocean eddy effects for sound transmission applications. J. Acoust. Soc. Am. 1977, 62, 860–870. [Google Scholar] [CrossRef]
- Munk, W.H. Sound channel in an exponentially stratified ocean, with application to SOFAR. J. Acoust. Soc. Am. 1974, 55, 220. [Google Scholar] [CrossRef]
Vortex Center Position | Type | Volex Radius | Maximum Flow Rate |
---|---|---|---|
16.74° N, 115.72° E | Cold vortex | 27.055 km | 15.6 cm/s |
Depth z/m | Vortex Center Position | Vortex Size at Different Depths | Vortex Center Temp (T0/°C) | Vortex Edge Temp (T1/°C) | Temperature Difference between Edge and Center (°C) | ||
---|---|---|---|---|---|---|---|
x0/m | y0/m | xm/km | ym/km | ||||
300 | 270 | −135 | 96.9 | 71.7 | 11.45 | 12.69 | 1.24 |
400 | 170 | −185 | 76.0 | 59.6 | 9.68 | 10.48 | 0.80 |
500 | 160 | −147 | 73.6 | 52.4 | 8.51 | 9.25 | 0.74 |
600 | 453 | −204 | 63.0 | 49.5 | 7.77 | 8.46 | 0.69 |
Vortex Depth | Short Half Axis | Long Half Axis | Temperature Difference between Vortex Edge and Vortex Center | Sound Velocity Difference between Vortex Edge and Vortex Center |
---|---|---|---|---|
400 m | 29.8 km | 38 km | 0.8 °C | 3.6 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Song, Y.; Huang, J.; Piao, S. Analysis of Underwater Acoustic Propagation under the Influence of Mesoscale Ocean Vortices. J. Mar. Sci. Eng. 2021, 9, 799. https://doi.org/10.3390/jmse9080799
Khan S, Song Y, Huang J, Piao S. Analysis of Underwater Acoustic Propagation under the Influence of Mesoscale Ocean Vortices. Journal of Marine Science and Engineering. 2021; 9(8):799. https://doi.org/10.3390/jmse9080799
Chicago/Turabian StyleKhan, Sartaj, Yang Song, Jian Huang, and Shengchun Piao. 2021. "Analysis of Underwater Acoustic Propagation under the Influence of Mesoscale Ocean Vortices" Journal of Marine Science and Engineering 9, no. 8: 799. https://doi.org/10.3390/jmse9080799
APA StyleKhan, S., Song, Y., Huang, J., & Piao, S. (2021). Analysis of Underwater Acoustic Propagation under the Influence of Mesoscale Ocean Vortices. Journal of Marine Science and Engineering, 9(8), 799. https://doi.org/10.3390/jmse9080799