Assessing the Impact of Wave–Current Interactions on Storm Surges and Waves during Cold Air Outbreaks in the Northern East China Sea
Abstract
:1. Introduction
2. Coupled Model and Numerical Experiments
2.1. Model Description
2.1.1. Hydrodynamic Model
2.1.2. Wave Model
2.2. Model Set-Up
2.3. Experiments Design
3. Model Validation
3.1. CAO-Induced GNW Wind
3.2. CAO-Induced GNE Wind
4. Results and Discussion
4.1. Evolutions of Storm Surge and Wave
4.2. Contributions of Wave–Current Interaction to Water Level and Current
4.3. Contributions of Wave–Current Interaction to Waves
4.4. Wave Effect on the Momentum Balance
4.5. Current Effect on the Wave Action Balance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ricchi, A.; Miglietta, M.M.; Falco, P.; Benetazzo, A.; Bonaldo, D.; Bergamasco, A.; Sclavo, M.; Carniel, S. On the use of a coupled ocean–atmosphere–wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos. Res. 2016, 172–173, 48–65. [Google Scholar] [CrossRef]
- Feng, J.; Li, D.; Li, Y.; Liu, Q.; Wang, A. Storm surge variation along the coast of the Bohai Sea. Sci. Rep. 2018, 8, 11309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, D.; Hou, Y.; Liu, Y.; Li, J. Study on the growth of wind wave frequency spectra generated by cold air outbreaks in the northern East China Sea. J. Oceanol. Limnol. 2018, 36, 1509–1526. [Google Scholar] [CrossRef]
- McInnes, K.L.; Hubbert, G.D. A numerical modeling study of storm surges in Bass Strait. Aust. Meteorol. Mag. 2003, 52, 143–156. [Google Scholar]
- Zhao, P.; Jiang, W. A numerical study of storm surges caused by cold-air outbreaks in the Bohai Sea. Nat. Hazards 2011, 59, 1–15. [Google Scholar] [CrossRef]
- Yao, Q.; Zheng, C.W.; Su, Q.; Wang, J.; Liang, X.Y.; Li, Y.B. Simulation of wave field in the China Sea by using WAVEWATCH III wave model. Mar. Forecast. 2013, 30, 49–54, (In Chinese with English Abstract). [Google Scholar]
- Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A. Wave-current interaction: Effect on the wave field in a semi-enclosed basin. Ocean Model. 2013, 70, 152–165. [Google Scholar] [CrossRef]
- Li, X.; Dong, S. A preliminary study on the intensity of cold wave storm surges of Laizhou Bay. J. Ocean Univ. China 2016, 15, 987–995. [Google Scholar] [CrossRef]
- Wang, K.; Hou, Y.; Li, S.; Du, M.; Chen, J.; Lu, J. A comparative study of storm surge and wave setup in the East China Sea between two severe weather events. Estuar. Coast. Shelf Sci. 2020, 235, 106583. [Google Scholar] [CrossRef]
- Bonaldo, D.; Antonioli, F.; Archetti, R.; Bezzi, A.; Correggiari, A.; Davolio, S.; De Falco, G.; Fantini, M.; Fontolan, G.; Furlani, S.; et al. Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: Lessons and challenges from the Adriatic Sea, Italy. J. Coast. Conserv. 2019, 23, 19–37. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Q.; Wu, Y. An empirical formula for maximum wave setup based on a coupled wave-current model. Ocean Eng. 2018, 147, 215–226. [Google Scholar] [CrossRef]
- Lane, E.M.; Restrepo, J.M.; Mcwilliams, J.C. Wave–Current Interaction: A Comparison of Radiation-Stress and Vortex-Force Representations. J. Phys. Oceanogr. 2007, 37, 1122–1141. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Voulgaris, G.; Warner, J.C.; Olabarrieta, M. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model. 2012, 47, 65–95. [Google Scholar] [CrossRef]
- Zhang, C.; Hou, Y.; Li, J. Wave-current interaction during Typhoon Nuri (2008) and Hagupit (2008): An application of the coupled ocean-wave modeling system in the northern South China Sea. J. Oceanol. Limnol. 2018, 36, 663–675. [Google Scholar] [CrossRef]
- Ardhuin, F.; Roland, A.; Dumas, F.; Bennis, A.C.; Sentchev, A.; Forget, P.; Wolf, J.; Girard, F.; Osuna, P.; Benoit, M. Numerical wave modeling in conditions with strong currents: Dissipation, refraction, and relative wind. J. Phys. Oceanogr. 2012, 42, 2101–2120. [Google Scholar] [CrossRef]
- Hopkins, J.; Elgar, S.; Raubenheimer, B. Observations and model simulations of wave-current interaction on the inner shelf. J. Geophys. Res. 2016, 121, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Donelan, W.; Dobson, F.; Smith, S. On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr. 1993, 23, 2143–2149. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Iorio, D.D. Depth- and current-induced effects on wave propagation into the Altamaha River Estuary, Georgia. Estuar. Coast. Shelf Sci. 2006, 66, 395–408. [Google Scholar] [CrossRef]
- Zhang, X.F.; Han, G.J.; Wang, D.X.; Li, W.; He, Z.J. Effect of surface wave breaking on the surface boundary layer of temperature in the Yellow Sea in summer. Ocean Model. 2011, 38, 267–279. [Google Scholar] [CrossRef]
- Deng, Z.; Xie, L.; Yu, T.; Shi, S.; Jin, J.; Wu, K. Numerical study of the effects of wave-induced forcing on dynamics in ocean mixed layer. Adv. Meteorol. 2013, 2013, 365818. [Google Scholar] [CrossRef]
- Singh, S.K.; Raushan, P.K.; Debnath, K. Combined effect of wave and current in rough bed free surface flow. Ocean Eng. 2018, 160, 20–32. [Google Scholar] [CrossRef]
- Zheng, J.; Tang, Y. Numerical simulation of spatial lag between wave breaking point and location of maximum wave-induced current. China Ocean Eng. 2009, 23, 59–71. [Google Scholar]
- Dietrich, J.C.; Zijlema, M.; Westerink, J.J.; Holthuijsen, L.H.; Dawson, C.; Luettich, R.A., Jr.; Jensen, R.E.; Smith, J.M.; Stelling, G.S.; Stone, G.W. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng. 2011, 58, 45–65. [Google Scholar] [CrossRef]
- Teles, M.J.; Pires-Silva, A.A.; Benoit, M. Numerical modelling of wave current interactions at a local scale. Ocean Model. 2013, 68, 72–87. [Google Scholar] [CrossRef]
- Zhang, J.-S.; Zhang, Y.; Jeng, D.-S.; Liu, P.L.-F.; Zhang, C. Numerical simulation of wave–current interaction using a RANS solver. Ocean Eng. 2014, 75, 157–164. [Google Scholar] [CrossRef]
- Xie, L.; Pietrafesa, L.J.; Wu, K. A numerical study of wave–current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996. J. Geophys. Res. 2003, 108, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Perrie, W.; Toulany, B.; Smith, P.C. Wind-generated waves in Hurricane Juan. Ocean Model. 2007, 16, 188–205. [Google Scholar] [CrossRef]
- Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr. 2009, 39, 2097–2116. [Google Scholar] [CrossRef]
- Wu, L.; Rutgersson, A.; Sahlée, E. Upper-ocean mixing due to surface gravity waves. J. Geophys. Res. 2015, 120, 8210–8228. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Chen, Y.; Zhang, H.; Chen, Z. Effects of Wave–Current Interaction on Salt Intrusion during a Typhoon Event in a Highly Stratified Estuary. Estuaries Coasts 2018, 41, 1904–1923. [Google Scholar] [CrossRef]
- Sun, Y.; Perrie, W.; Toulany, B. Simulation of wave-current interactions under hurricane conditions using an unstructured-grid model: Impacts on ocean waves. J. Geophys. Res. 2018, 123, 3739–3760. [Google Scholar] [CrossRef]
- Hsiao, S.C.; Wu, H.L.; Chen, W.B.; Chang, C.H.; Lin, L.Y. On the Sensitivity of Typhoon Wave Simulations to Tidal Elevation and Current. J. Mar. Sci. Eng. 2020, 8, 731. [Google Scholar] [CrossRef]
- Wang, P.; Sheng, J. A comparative study of wave-current interactions over the eastern Canadian shelf under severe weather conditions using a coupled wave-circulation model. J. Geophys. Res. 2016, 121, 5252–5281. [Google Scholar] [CrossRef]
- Fan, Y.; Ginis, I.; Hara, T. Momentum flux budget across the air–sea interface under uniform and tropical cyclone winds. J. Phys. Oceanogr. 2010, 40, 2221–2242. [Google Scholar] [CrossRef]
- Liu, G.; Perrie, W.; Hughes, C. Surface wave effects on the wind-power input to mixed layer near-inertial motions. J. Phys. Oceanogr. 2017, 47, 1077–1093. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Beardsley, R.C.; Xu, Q.; Qi, J.; Lin, H. Impact of current-wave interaction on storm surge simulation: A case study for Hurricane Bob. J. Geophys. Res. 2013, 118, 2685–2701. [Google Scholar] [CrossRef] [Green Version]
- Marsooli, R.; Orton, P.M.; Mellor, G.; Georgas, N.; Blumberg, A.F. A coupled circulation–wave model for numerical simulation of storm tides and waves. J. Atmos. Ocean. Technol. 2017, 34, 1449–1467. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Zhang, H.; Gong, W. Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato. Estuar. Coast. Shelf Sci. 2019, 228, 106364. [Google Scholar] [CrossRef]
- Perrie, W.; Tang, C.L.; Hu, Y.; DeTracy, B.M. The impact of waves on surface currents. J. Phys. Oceanogr. 2003, 33, 2126–2140. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Bracegirdle, T.J.; Seierstad, I.A. Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation. Clim. Dyn. 2009, 33, 187–197. [Google Scholar] [CrossRef]
- Papritz, L.; Pfahl, S.; Sodemann, H.; Wernli, H. A Climatology Outbreaks and Their Impact on Air–Sea Heat Fluxes in the High-Latitude South Pacific. J. Clim. 2015, 28, 342–364. [Google Scholar] [CrossRef]
- Mo, D.; Hou, Y.; Li, J.; Liu, Y. Study on the storm surges induced by CAOs in the northern East China Sea. J. Mar. Syst. 2016, 160, 26–39. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q.; Gao, W. Analysis on the impact of a cold wave on the East China Sea in January 2009. Mar. Forecast. 2010, 27, 44–47. (In Chinese) [Google Scholar]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Olabarrieta, M.; Warner, J.C.; Kumar, N. Wave-current interaction in Willapa Bay. J. Geophys. Res. Ocean. 2011, 116, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Olabarrieta, M.; Warner, J.C.; Armstrong, B.; Zambon, J.B.; He, R. Ocean-atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 2012, 43, 112–137. [Google Scholar] [CrossRef] [Green Version]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Booij, N.R.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, Y.; McWilliams, J.C.; Shchepetkin, A.F. Wave-current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Model. 2010, 34, 16–35. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens. Environ. 2014, 152, 480–492. [Google Scholar] [CrossRef]
- Colberg, F.; McInnes, K.L. The impact of future changes in weather patterns on extreme sea levels over southern Australia. J. Geophys. Res. Ocean. 2012, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.B.; Chen, H.; Hsiao, S.C.; Chang, C.H.; Lin, L.Y. Wind forcing effect on hindcasting of typhoon-driven extreme waves. Ocean Eng. 2019, 188, 106260. [Google Scholar] [CrossRef]
- Hsiao, S.C.; Chen, H.; Chen, W.B.; Chang, C.H.; Lin, L.Y. Quantifying the contribution of nonlinear interactions to storm tide simulations during a super typhoon event. Ocean Eng. 2019, 194, 106661. [Google Scholar] [CrossRef]
- Chen, W.B.; Lin, L.Y.; Jang, J.H.; Chang, C.H. Simulation of Typhoon-Induced Storm Tides and Wind Waves for the Northeastern Coast of Taiwan Using a Tide–Surge–Wave Coupled Model. Water 2017, 9, 549. [Google Scholar] [CrossRef]
- Parvathy, K.G.; Bhaskaran, P.K. Wave attenuation in presence of mangroves: A sensitivity study for varying bottom slopes. Int. J. Ocean Clim. Syst. 2017, 8, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Kuang, C.; Gu, J.; Zou, Q.; Liang, H.; Sun, X.; Ma, Z. Nonlinear tide-surge-wave interaction at a shallow coast with large scale sequential harbor constructions. Estuar. Coast. Shelf Sci. 2020, 233, 106543. [Google Scholar] [CrossRef]
- Wu, G.; Shi, F.; Kirby, J.T.; Liang, B.; Shi, J. Modeling wave effects on storm surge and coastal inundation. Coast. Eng. 2018, 140, 371–382. [Google Scholar] [CrossRef]
- Song, H.; Kuang, C.; Wang, X.H.; Ma, Z. Wave-current interactions during extreme weather conditions in southwest of Bohai Bay, China. Ocean Eng. 2020, 216, 108068. [Google Scholar] [CrossRef]
- Kang, K.; Kim, S. Wave-tide interactions during a strong storm event in Kyunggi Bay, Korea. Ocean Eng. 2015, 108, 10–20. [Google Scholar] [CrossRef]
- Yu, X.; Pan, W.; Zheng, X.; Zhou, S.; Tao, X. Effects of wave-current interaction on storm surge in the Taiwan strait: Insights from typhoon Morakot. Cont. Shelf Res. 2017, 146, 47–57. [Google Scholar] [CrossRef]
- Jia, Y.; Yin, B.; Yang, D. A numerical study of the influence of wave-current interaction on water elevation and significant wave height in the East China Sea. Mar. Sci. 2009, 33, 82–86, (In Chinese with English Abstract). [Google Scholar]
- Prakash, K.R.; Pant, V. On the wave-current interaction during the passage of a tropical cyclone in the Bay of Bengal. Deep Sea Res. Part II 2020, 172, 104658. [Google Scholar] [CrossRef]
- Yin, B.; Sha, R.; Yang, D.; Cheng, M. Numerical study of wave-tide-surge coupling processes. Studi. Mar. Sin. 2006, 47, 1–15. [Google Scholar]
- Xie, L.; Liu, H.; Peng, M. The effect of wave-current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Model. 2008, 20, 252–269. [Google Scholar] [CrossRef]
- Holthuijsen, L.H.; Tolman, H.L. Effects of the Gulf Stream on Ocean Waves. J. Geophys. Res. 1991, 96, 12755–12771. [Google Scholar] [CrossRef]
- Shi, L.; Olabarrieta, M.; Valle-Levinson, A.; Warner, J.C. Relevance of wind stress and wave-dependent ocean surface roughness on the generation of winter meteotsunamis in the Northern Gulf of Mexico. Ocean Model. 2019, 140, 101408. [Google Scholar] [CrossRef]
Experiment ID | Model Name | Water Level | Current | Wave |
---|---|---|---|---|
Exp1 | ROMS | Y | Y | N |
Exp2 | SWAN | N | N | Y |
Exp3 | ROMS + SWAN | Y | N | Y |
Exp4 | ROMS + SWAN | N | Y | Y |
Exp5 | ROMS + SWAN | Y | Y | Y |
Tidal Stations and Buoys | Latitude (° N) | Longitude (° E) | MRE | RMSE (m) | CC | |||
---|---|---|---|---|---|---|---|---|
Exp1 or Exp2 | Exp5 | Exp1 or Exp2 | Exp5 | Exp1 or Exp2 | Exp5 | |||
Wei Fang | 37.23 | 119.18 | 22% | 15% | 0.18 | 0.20 | 0.98 | 0.96 |
Yellow River Harbor | 38.10 | 118.97 | 15% | 4.2% | 0.12 | 0.14 | 0.99 | 0.97 |
Tang Gu | 38.98 | 117.78 | 24% | 12% | 0.16 | 0.15 | 0.98 | 0.97 |
Hulu Island | 40.70 | 120.98 | 11% | 5.3% | 0.16 | 0.16 | 0.98 | 0.97 |
B1 | 38.02 | 119.51 | 4.3% | 6.3% | 0.34 | 0.34 | 0.96 | 0.96 |
B2 | 38.33 | 121.09 | 2.5% | 5.8% | 0.41 | 0.38 | 0.94 | 0.94 |
B3 | 38.53 | 119.00 | 14% | 12% | 0.52 | 0.50 | 0.95 | 0.95 |
B5 | 39.01 | 120.04 | 1.3% | 3.0% | 0.33 | 0.31 | 0.93 | 0.93 |
Tidal Stations and Buoys | Latitude (° N) | Longitude (° E) | MRE | RMSE (m) | CC | |||
---|---|---|---|---|---|---|---|---|
Exp1 or Exp2 | Exp5 | Exp1 or Exp2 | Exp5 | Exp1 or Exp2 | Exp5 | |||
Wei Fang | - | - | 15% | 3.6% | 0.13 | 0.16 | 0.90 | 0.85 |
Yellow River Harbor | - | - | 18% | 5.4% | 0.096 | 0.13 | 0.93 | 0.90 |
Tang Gu | - | - | 11% | 0.49% | 0.12 | 0.15 | 0.92 | 0.89 |
Hulu Island | - | - | 11% | 2.4% | 0.09 | 0.11 | 0.98 | 0.97 |
B1 | 38.02 | 119.51 | 20% | 21% | 0.42 | 0.44 | 0.93 | 0.93 |
B2 | 39.30 | 120.36 | 14% | 17% | 0.36 | 0.38 | 0.94 | 0.94 |
B3 | 38.09 | 121.04 | 0.45% | 1.6% | 0.16 | 0.17 | 0.98 | 0.98 |
B4 | 38.55 | 123.20 | 34% | 32% | 0.29 | 0.28 | 0.98 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, D.; Li, J.; Hou, Y. Assessing the Impact of Wave–Current Interactions on Storm Surges and Waves during Cold Air Outbreaks in the Northern East China Sea. J. Mar. Sci. Eng. 2021, 9, 824. https://doi.org/10.3390/jmse9080824
Mo D, Li J, Hou Y. Assessing the Impact of Wave–Current Interactions on Storm Surges and Waves during Cold Air Outbreaks in the Northern East China Sea. Journal of Marine Science and Engineering. 2021; 9(8):824. https://doi.org/10.3390/jmse9080824
Chicago/Turabian StyleMo, Dongxue, Jian Li, and Yijun Hou. 2021. "Assessing the Impact of Wave–Current Interactions on Storm Surges and Waves during Cold Air Outbreaks in the Northern East China Sea" Journal of Marine Science and Engineering 9, no. 8: 824. https://doi.org/10.3390/jmse9080824
APA StyleMo, D., Li, J., & Hou, Y. (2021). Assessing the Impact of Wave–Current Interactions on Storm Surges and Waves during Cold Air Outbreaks in the Northern East China Sea. Journal of Marine Science and Engineering, 9(8), 824. https://doi.org/10.3390/jmse9080824