Modeling Multiscale and Multiphysics Coastal Ocean Processes: A Discussion on Necessity, Status, and Advances
Abstract
:1. Background and Necessities
2. A Discussion of the Collected Papers
3. Current Status
4. Future Efforts
5. Concluding Remarks
- Multiscale simulation has become widespread, while the multiphysics simulation remains in the preliminary stages of research
- Model coupling is considered the most feasible and promising approach to realizing multiscale, multiphysics ocean flows for the foreseeable future, given the status of techniques and interests of funding programs.
- Future multiscale and multiphysics research efforts will be based on rigorous foundations and methods, field data collection, and data-driven artificial intelligence.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carriger, J.F.; Jordan, S.J.; Kurtz, J.C.; Benson, W.H. Identifying evaluation considerations for the recovery and restoration from the 2010 Gulf of Mexico oil spill: An initial appraisal of stakeholder concerns and values. Integr. Environ. Assess. Manag. 2015, 11, 502–513. [Google Scholar] [CrossRef]
- Pietrafesa, L.J.; Zhang, H.; Bao, S.; Gayes, P.T.; Hallstrom, J.O. Coastal Flooding and Inundation and Inland Flooding due to Downstream Blocking. J. Mar. Sci. Eng. 2019, 7, 336. [Google Scholar] [CrossRef] [Green Version]
- Neill, S.P.; Angeloudis, A.; Robins, P.E.; Walkington, I.; Ward, S.L.; Masters, I.; Lewis, M.J.; Piano, M.; Avdis, A.; Piggott, M.D.; et al. Tidal range energy resource and optimization—Past perspectives and future challenges. Renew. Energy 2018, 127, 763–778. [Google Scholar] [CrossRef]
- Nichols, C.R.; Wright, L.D. The Evolution and Outcomes of a Collaborative Testbed for Predicting Coastal Threats. J. Mar. Sci. Eng. 2020, 8, 612. [Google Scholar] [CrossRef]
- The Princeton Model. Available online: http://www.ccpo.odu.edu/POMWEB/ (accessed on 27 July 2021).
- ADCIRC. Available online: https://adcirc.org/community/ (accessed on 2 August 2021).
- Regional Ocean Modeling System (ROMS). Available online: https://www.myroms.org/ (accessed on 27 July 2021).
- Wave Watch III. Available online: https://polar.ncep.noaa.gov/waves/wavewatch/ (accessed on 15 March 2021).
- Qu, K. Computational Study of Hydrodynamic Impact by Extreme Surge and Wave on Coastal Structure. Ph.D. Thesis, The City College of New York, New York, NY, USA, 2007. [Google Scholar]
- Lermusiaux, P.F.J.; Schröter, J.; Danilov, S.; Iskandarani, M.; Pinardi, N.; Westerink, J.J. Multiscale modeling of coastal, shelf, and global ocean dynamics. Ocean Dyn. 2013, 63, 1341–1344. [Google Scholar] [CrossRef] [Green Version]
- Haidvogel, D.B.; Curchitser, E.N.; Danilov, S.; Fox-Kemper, B. Numerical modelling in a multiscale ocean. J. Mar. Res. 2017, 75, 683–725. [Google Scholar] [CrossRef]
- Tang, H.S.; Haynes, R.D.; Houzeaux, G. A Review of Domain Decomposition Methods for Simulation of Fluid Flows: Concepts, Algorithms, and Applications. Arch. Comput. Methods Eng. 2021, 28, 841–873. [Google Scholar] [CrossRef]
- Kondic, L.; González, A.G.; Diez, J.A.; Fowlkes, J.D.; Rack, P. Liquid-State Dewetting of Pulsed-Laser-Heated Nanoscale Metal Films and Other Geometries. Annu. Rev. Fluid Mech. 2020, 52, 235–262. [Google Scholar] [CrossRef] [Green Version]
- Keyes, D.E.; McInnes, L.C.; Woodward, C.; Gropp, W.; Myra, E.; Pernice, M.; Bell, J.; Brown, J.; Clo, A.; Connors, J.; et al. Multiphysics simulations: Challenges and opportunities. Int. J. High Perform. Comput. Appl. 2013, 27, 4–83. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-G.; Tang, H.-S. Coupling of CFD model and FVCOM to predict small-scale coastal flows. J. Hydrodyn. Ser. B 2010, 22, 284–289. [Google Scholar] [CrossRef]
- Tang, H.S.; Keen, T. Hybrid model approaches to predict multiscale and multiphysics coastal hydrodynamic and sediment transport processes. In Sediment Transport; Ginsberg, S.S., Ed.; Intech: London, UK, 2011; ISBN 978-953-307-189-3. [Google Scholar]
- Candy, A.S. An implicit wetting and drying approach for non-hydrostatic baroclinic flows in high aspect ratio domains. Adv. Water Resour. 2017, 102, 188–205. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.S.; Nichols, C.R.; Resio, D.T.; Wright, D. Multiscale, Multiphysics Modelling of Coastal Ocean Processes: Paradigms and Approaches, J. Marine Science and Engineering, Special Issue. 2019. Available online: https://www.mdpi.com/journal/jmse/special_issues/mul_model_coastal (accessed on 28 July 2021).
- Loftis, J.D.; Mitchell, M.; Schatt, D.; Forrest, D.R.; Wang, H.V.; Mayfield, D.; Stiles, W.A. Validating an Operational Flood Forecast Model Using Citizen Science in Hampton Roads, VA, USA. J. Mar. Sci. Eng. 2019, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, C.; Cowles, G.W.; Winant, C.D.; Beardsley, R.C.; Hedstrom, K.S.; Haidvogel, D.B. FVCOM validation experiments: Comparisons with ROMS for three idealized barotropic test problems. J. Geophys. Res. 2008, 113, c07042. [Google Scholar] [CrossRef] [Green Version]
- Nudds, S.; Lu, Y.; Higginson, S.; Haigh, S.P.; Paquin, J.-P.; O’Flaherty-Sproul, M.; Taylor, S.; Blanken, H.; Marcotte, G.; Smith, G.C.; et al. Evaluation of Structured and Unstructured Models for Application in Operational Ocean Forecasting in Nearshore Waters. J. Mar. Sci. Eng. 2020, 8, 484. [Google Scholar] [CrossRef]
- Iuppa, C.; Cavallaro, L.; Vicinanza, D.; Foti, E. Investigation of suitable sites for wave energy converters around Sicily (Italy). Ocean. Sci. 2015, 11, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Li, C. Contrasting Hydrodynamic Responses to Atmospheric Systems with Different Scales: Impact of Cold Fronts vs. That of a Hurricane. J. Mar. Sci. Eng. 2020, 8, 979. [Google Scholar] [CrossRef]
- Harris, C.; Syvitski, J.; Arango, H.; Meiburg, E.; Cohen, S.; Jenkins, C.; Birchler, J.; Hutton, E.; Kniskern, T.; Radhakrishnan, S.; et al. Data-Driven, Multi-Model Workflow Suggests Strong Influence from Hurricanes on the Generation of Turbidity Currents in the Gulf of Mexico. J. Mar. Sci. Eng. 2020, 8, 586. [Google Scholar] [CrossRef]
- Wang, J.Y.; Tang, H.S.; Fang, H.W. A fully-coupled method to simulate wave, current, and morphology system. Comm. Nonlinear Sci. Numer. Simul. 2013, 18, 1694–1709. [Google Scholar] [CrossRef]
- Oishi, Y.; Piggott, M.D.; Maeda, T.; Kramer, S.C.; Collins, G.S.; Tsushima, H.; Furumura, T.; Kramer, S. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model. J. Geophys. Res. Solid Earth 2013, 118, 2998–3018. [Google Scholar] [CrossRef]
- Valera, M.; Thomas, M.P.; Garcia, M.; Castillo, J.E. Parallel Implementation of a PETSc-Based Framework for the General Curvilinear Coastal Ocean Model. J. Mar. Sci. Eng. 2019, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Agoshkov, V.; Lezina, N.; Sheloput, T. Domain Decomposition Method for the Variational Assimilation of the Sea Level in a Model of Open Water Areas Hydrodynamics. J. Mar. Sci. Eng. 2019, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Agoshkov, V.I.; Zalesny, V.B.; Sheloput, T.O. Variational Data Assimilation in Problems of Modeling Hydrophysical Fields in Open Water Areas. Izv. Atmos. Ocean. Phys. 2020, 56, 253–267. [Google Scholar] [CrossRef]
- Ringler, T.; Petersen, M.; Higdon, R.L.; Jacobsen, D.; Jones, P.W.; Maltrud, M. A multi-resolution approach to global ocean modeling. Ocean Model. 2013, 69, 211–232. [Google Scholar] [CrossRef]
- Wang, Q.; Wekerle, C.; Danilov, S.; Wang, X.; Jung, T. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4. Geosci. Model Dev. 2018, 11, 1229–1255. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Kraatz, S.; Qu, K.; Chen, G.; Aboobaker, N.; Jiang, C. High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA. Renew. Sustain. Energy Rev. 2014, 32, 960–982. [Google Scholar] [CrossRef]
- Ribal, A.; Babanin, A.V.; Zieger, S.; Liu, Q. A high-resolution wave energy resource assessment of Indonesia. Renew. Energy 2020, 160, 1349–1363. [Google Scholar] [CrossRef]
- Blumberg, A.F.; Georgas, N.; Yin, L.; Herrington, T.O.; Orton, P.M. Street-Scale Modeling of Storm Surge Inundation along the New Jersey Hudson River Waterfront. J. Atmos. Ocean. Technol. 2015, 32, 1486–1497. [Google Scholar] [CrossRef] [Green Version]
- Biastoch, A.; Sein, D.; Durgadoo, J.; Wang, Q.; Danilov, S. Simulating the Agulhas system in global ocean models—Nesting vs. multi-resolution unstructured meshes. Ocean Model. 2018, 121, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, D.A.; Dupont, F.; Lyard, F.H.; Lynch, D.R.; Werner, F.E. Resolution issues in numerical models of oceanic and coastal circulation. Cont. Shelf Res. 2007, 27, 1317–1343. [Google Scholar] [CrossRef]
- Fringer, O.; McWilliams, J.; Street, R. A New Hybrid Model for Coastal Simulations. Oceanography 2006, 19, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Qia, J.; Chen, C.C.; Beardsley, R.C.; Perrie, W.; Cowles, G.W.; Lai, Z. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications. Ocean. Model. 2009, 28, 153–166. [Google Scholar] [CrossRef]
- Bennis, A.-C.; Ardhuin, F.; Dumas, F. On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests. Ocean Model. 2011, 40, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Couvelard, X.; Lemarié, F.; Samson, G.; Redelsperger, J.-L.; Ardhuin, F.; Benshila, R.; Madec, G. Development of a two-way-coupled ocean—Wave model: Assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration. Geosci. Model Dev. 2020, 13, 3067–3090. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Signell, R.; Harris, C.; Arango, H.G. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 2008, 34, 1284–1306. [Google Scholar] [CrossRef]
- Abolfazli, E.; Liang, J.; Fan, Y.; Chen, Q.J.; Walker, N.D.; Liu, J. Surface Gravity Waves and Their Role in Ocean-Atmosphere Coupling in the Gulf of Mexico. J. Geophys. Res. Oceans 2020, 125, 014820. [Google Scholar] [CrossRef]
- Bai, P.; Wang, J.; Chu, P.; Hawley, N.; Fujisaki-Manome, A.; Kessler, J.; Lofgren, B.M.; Beletsky, D.; Anderson, E.J.; Li, Y. Modeling the ice-attenuated waves in the Great Lakes. Ocean Dyn. 2020, 70, 991–1003. [Google Scholar] [CrossRef]
- Chen, X. Dynamic coupling of a three-dimensional hydrodynamic model with a laterally averaged, two-dimensional hydrodynamic model. J. Geophys. Res. 2007, 112, c07022. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Kraatz, S.; Wu, X.; Cheng, W.; Qu, K.; Polly, J. Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: Method, implementation, and experiment. Ocean Eng. 2013, 62, 56–67. [Google Scholar] [CrossRef]
- Fujima, K.; Masamura, K.; Goto, C. Development of the 2D/3D Hybrid Model for Tsunami Numerical Simulation. Coast. Eng. J. 2002, 44, 373–397. [Google Scholar] [CrossRef]
- Choboter, P.F.; Garcia, M.; De Cecchis, D.; Thomas, M.; Walter, R.K.; Castillo, J.E. Nesting nonhydrostatic GCCOM within hydrostatic ROMS for multiscale coastal ocean modeling. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–4. Available online: https://ieeexplore.ieee.org/document/7761488 (accessed on 27 July 2021).
- Tang, H.; Qu, K.; Wu, X. An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows. J. Comput. Phys. 2014, 273, 548–571. [Google Scholar] [CrossRef]
- Qu, K.; Tang, H.; Agrawal, A. Integration of fully 3D fluid dynamics and geophysical fluid dynamics models for multiphysics coastal ocean flows: Simulation of local complex free-surface phenomena. Ocean Model. 2019, 135, 14–30. [Google Scholar] [CrossRef]
- Perezhogin, P.; Chernov, I.; Iakovlev, N. Advanced parallel implementation of the coupled ocean–ice model FEMAO (version 2.0) with load balancing. Geosci. Model Dev. 2021, 14, 843–857. [Google Scholar] [CrossRef]
- Sein, D.V.; Groger, M.; Cabos, W.; Alvarez-Garcia, F.J.; Hagemann, S.; Pinto, J.G.; Izquierdo, A.; de la Vara, A.; Koldunov, N.V.; Dvornikov, A.Y.; et al. Regionally coupled atmos-phere-ocean-marine biogeochemistry model ROM: 2. Studying the climate change signal in the North Atlantic and Europe. J. Adv. Modeling Earth Syst. 2020, 12, e2019MS001646. [Google Scholar]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- Allard, R.; Rogers, E.; Martin, P.; Jensen, T.; Chu, P.; Campbell, T.; Dykes, J.; Smith, T.; Choi, J.; Gravois, U. The US Navy Coupled Ocean-Wave Prediction System. Oceanography 2014, 27, 92–103. [Google Scholar] [CrossRef]
- Qi, J.; Chen, C.; Beardsley, R.C. FVCOM one-way and two-way nesting using ESMF: Development and validation. Ocean Model. 2018, 124, 94–110. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.J.G.; Neill, S.P.; Lewis, M.J. Tidal energy extraction in three-dimensional ocean models. Renew. Energy 2017, 114, 244–257. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, B.T.; Bredmose, H.; Bingham, H.B. An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders. Coast. Eng. 2014, 86, 57–76. [Google Scholar] [CrossRef]
- Blain, C.A.; Massey, T.C. Application of a coupled discontinuous–continuous Galerkin finite element shallow water model to coastal ocean dynamics. Ocean Model. 2005, 10, 283–315. [Google Scholar] [CrossRef]
- Botelho, D.; Imberger, J.; Dallimore, C.; Hodges, B.R. A hydrostatic/non-hydrostatic grid-switching strategy for computing high-frequency, high wave number motions embedded in geophysical flows. Environ. Model. Softw. 2009, 24, 473–488. [Google Scholar] [CrossRef]
- Hoang, T.-T.-P.; Leng, W.; Ju, L.; Wang, Z.; Pieper, K. Conservative explicit local time-stepping schemes for the shallow water equations. J. Comput. Phys. 2019, 382, 152–176. [Google Scholar] [CrossRef]
- Debreu, L.; Marchesiello, P.; Penven, P.; Cambon, G. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Model. 2012, 49, 1–21. [Google Scholar] [CrossRef]
- Blayo, E.; Rousseau, A. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discret. Contin. Dyn. Syst. Ser. S 2016, 9, 1565–1574. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Liu, Y. Coupling of Navier-Stokes Equations and Their Hydrostatic Versions for Ocean Flows: A Discussion on Algorithm and Implementation. In Domain Decomposition Methods in Science and Engineering XXV; DD 2018. Lecture Notes in Computational Science and Engineering; Haynes, R., MacLachlan, S., Cai, X.-C., Halpern, L., Kim, H.H., Klawonn, A., Widlund, O., Eds.; Springer: Berlin, Germany, 2020; p. 138. [Google Scholar]
- Connors, J.M.; Dolan, R.D. Stability of two conservative, high-order fluid-fluid coupling methods. Adv. Appl. Math. Mech. 2019, 11, 1287–1338. [Google Scholar]
- Tang, H.S.; Qu, K.; Wu, X.G.; Zhang, Z.K. Domain Decomposition for a Hybrid Fully 3D Fluid Dynamics and Geophysical Fluid Dynamics Modeling System: A Numerical Experiment on Transient Sill Flow. In Mesh free Methods for Partial Differential Equations VIII; Springer Science and Business Media: Berlin, Germany, 2016; pp. 407–414. [Google Scholar]
- NOAA NDBC. 2021. Available online: https://www.ndbc.noaa.gov/ (accessed on 28 July 2021).
- Talley, L.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Descriptive Physical Oceanography: An introduction, 6th ed.; Elsevier: Boston, MA, USA, 2011. [Google Scholar]
- Chen, X.; Hofland, B.; Altomare, C.; Suzuki, T.; Uijttewaal, W. Forces on a vertical wall on a dike crest due to over-topping flow. Coast. Eng. 2015, 95, 94–104. [Google Scholar] [CrossRef]
- Subramanian, A.C.; Balmaseda, M.A.; Centurioni, L.; Chattopadhyay, R.; Cornuelle, B.D.; DeMott, C.; Flatau, M.; Fujii, Y.; Giglio, D.; Gille, S.T.; et al. Ocean Observations to Improve Our Understanding, Modeling, and Forecasting of Subseasonal-to-Seasonal Variability. Front. Mar. Sci. 2019, 6, 427. [Google Scholar] [CrossRef] [Green Version]
- Nichols, C.R.; Raghukumar, K. Marine Environmental Characterization; Morgan & Claypool Publishers: San Rafael, CA, USA, 2020. [Google Scholar] [CrossRef]
- Cote, S.; Tatnall, A.R.L. Estimation of ocean surface currents from satellite imagery using a Hopfield neural network. Mar. Technol. Soc. J. 1996, 30, 4–13. [Google Scholar]
- Lee, T.-L. Neural network prediction of a storm surge. Ocean Eng. 2006, 33, 483–494. [Google Scholar] [CrossRef]
- Geeraerts, J.; Troch, P.; De Rouck, J.; Verhaeghe, H.; Bouma, J. Wave overtopping at coastal structures: Prediction tools and related hazard analysis. J. Clean. Prod. 2007, 15, 1514–1521. [Google Scholar] [CrossRef]
- James, S.C.; Zhang, Y.; O’Donncha, F. A machine learning framework to forecast wave conditions. Coast. Eng. 2018, 137, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aksamit, N.O.; Sapsis, T.; Haller, G. Machine-Learning Mesoscale and Submesoscale Surface Dynamics from Lagrangian Ocean Drifter Trajectories. J. Phys. Oceanogr. 2020, 50, 1179–1196. [Google Scholar] [CrossRef]
- Fringer, O.B.; Dawson, C.N.; He, R.; Ralston, D.K.; Zhang, Y.J. The future of coastal and estuarine modeling: Findings from a workshop. Ocean Model. 2019, 143, 101458. [Google Scholar] [CrossRef]
- Wiewel, S.; Becher, M.; Thuerey, N. Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow. Comput. Graph. Forum 2019, 38, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Baymani, M.; Effati, S.; Niazmand, H.; Kerayechian, A. Artificial neural network method for solving the Navier–Stokes equations. Neural Comput. Appl. 2014, 26, 765–773. [Google Scholar] [CrossRef]
- San, O.; Maulik, R. Extreme learning machine for reduced order modeling of turbulent geophysical flows. Phys. Rev. E 2018, 97, 042322. [Google Scholar] [CrossRef] [Green Version]
- Sirignan, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018, 375, 1339–1364. [Google Scholar] [CrossRef] [Green Version]
- Tensorflow, An End-to-End Open Source Machine Learning Platform. Available online: https://www.tensorflow.org/ (accessed on 28 July 2021).
- PyTorch. From Research to Production. Available online: https://pytorch.org/ (accessed on 2 August 2021).
- MathWorks, “MATLAB”. Available online: https://www.mathworks.com/products/matlab.html (accessed on 28 July 2021).
- Pawar, S.; Ahmed, S.E.; San, O. Interface learning in fluid dynamics: Statistical inference of closures within micro–macro-coupling models featured. Phys. Fluids 2020, 32, 091704. [Google Scholar] [CrossRef]
- Tang, H.; Li, L.; Grossberg, M.; Liu, Y.; Jia, Y.; Li, S.; Dong, W. An exploratory study on machine learning to couple numerical solutions of partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2021, 97, 105729. [Google Scholar] [CrossRef]
- Wright, L.D.; Nichols, C.R. (Eds.) Tomorrow’s Coasts: Complex and Impermanent; Coastal Research Library; Springer: Cham, Switzerland, 2019; Volume 27. [Google Scholar]
- Levine, R.M.; Fogaren, K.E.; Rudzin, J.E.; Russoniello, C.J.; Soule, D.C.; Whitaker, J.M. Open data, collaborative working platforms, and interdisciplinary collaboration: Building an early career scientist community of practice to lever-age ocean observatories initiative data to address critical questions in marine science. Front. Mar. Sci. 2020, 7, 1011. [Google Scholar] [CrossRef]
- Deng, Z.; Xie, L.; Liu, B.; Wu, K.; Zhao, D.; Yu, T. Coupling winds to ocean surface currents over the global ocean. Ocean Model. 2009, 29, 261–268. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Nichols, C.R.; Wright, L.D.; Resio, D. Modeling Multiscale and Multiphysics Coastal Ocean Processes: A Discussion on Necessity, Status, and Advances. J. Mar. Sci. Eng. 2021, 9, 847. https://doi.org/10.3390/jmse9080847
Tang H, Nichols CR, Wright LD, Resio D. Modeling Multiscale and Multiphysics Coastal Ocean Processes: A Discussion on Necessity, Status, and Advances. Journal of Marine Science and Engineering. 2021; 9(8):847. https://doi.org/10.3390/jmse9080847
Chicago/Turabian StyleTang, Hansong, Charles Reid Nichols, Lynn Donelson Wright, and Donald Resio. 2021. "Modeling Multiscale and Multiphysics Coastal Ocean Processes: A Discussion on Necessity, Status, and Advances" Journal of Marine Science and Engineering 9, no. 8: 847. https://doi.org/10.3390/jmse9080847
APA StyleTang, H., Nichols, C. R., Wright, L. D., & Resio, D. (2021). Modeling Multiscale and Multiphysics Coastal Ocean Processes: A Discussion on Necessity, Status, and Advances. Journal of Marine Science and Engineering, 9(8), 847. https://doi.org/10.3390/jmse9080847