Effects of Global Warming on the Poleward Heat Transport by Non-Stationary Large-Scale Atmospheric Eddies, and Feedbacks Affecting the Formation of the Arctic Climate
Abstract
:1. Introduction
- Globally averaged annual near-surface temperature;
- Heat content of the global ocean;
- Concentration of CO2 in the atmosphere;
- Globally averaged sea level;
- Ocean acidification;
- Sea ice extent in the Arctic and Antarctic, state of glaciers; and
- Global precipitation.
- Air temperature after NCEP/NCAR reanalysis data (North Hemisphere annual temperature, Arctic warm season air temperature, Arctic annual air temperature, and Arctic cold season air temperature);
- Average permafrost temperatures in some areas of Alaska;
- Precipitation data after NCEP/NCAR reanalysis (Arctic October to May precipitation, Arctic June to September precipitation, and Arctic annual precipitation);
- Arctic river discharge totals from Eurasian and North American regions;
- Pan-Arctic tundra maximum Normalized Difference Vegetation Index (NDVI) for elevations below 300 m, occurring in late July or early August, averaged over Arctic tundra;
- North American burned area (the sum of Alaska and Canada’s Northwest Territories, respectively);
- Spring snow cover duration of Arctic land area, excluding Greenland;
- September Arctic sea ice extent;
- Regional glacier mass balance standardized anomalies.
2. Meridional Equator-to-Pole Sensible and Latent Heat Transport in a Changing Climate
2.1. Meridional Heat and Moisture Transport: Linear Approximation
2.2. Estimation of the Climate Change Impact on the Characteristics of Large-Scale Atmospheric Eddies
2.3. The Impact of Climate Change on the Increment of Large-Scale Baroclinic Unstable Waves
3. Climate Feedbacks in the Arctic
4. Discussion and Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- The Millennium Project. Global Futures Studies and Research. Available online: www.millennium-project.org/15-global-challenges (accessed on 24 December 2020).
- Bradley, R. Paleoclimatology: Reconstructing Climates of the Quaternary; Elsevier: Oxford, UK, 2015; 696p. [Google Scholar]
- NOAA National Centers for Environmental Information, State of the Climate. Global Climate Report. December 2018. Available online: www.ncdc.noaa.gov/sotc/global/201812 (accessed on 21 December 2020).
- IPCC 2013. Contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- NOAA Earth System Research Laboratory. Global Monthly Mean CO2. Available online: www.esrl.noaa.gov/gmd/ccgg/trends/global.html (accessed on 21 December 2020).
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World scientists’ warning of a climate emergency. BioScience 2019, 70, 8–12. [Google Scholar] [CrossRef]
- Santer, B.D.; Bonfis, C.J.W.; Fu, Q.; Fyfe, J.C.; Hegerl, G.C.; Mears, C.; Painter, J.F.; Po-Chedley, S.; Wentz, F.J.; Zelinka, M.D.; et al. Celebrating the anniversary of three key events in climate change science. Nat. Clim. Chang. 2019, 9, 180–182. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. Inter-commission coordination group on WIGOS. In Proceedings of the Task Team on WIGOS Metadata (TT-WMD), Zurich, Switzerland, 27–29 November 2017; Available online: https://www.wmo.int/pages/prog/www/WIGOS-WIS/meetings/TT-WMD-6/TT-WMD-6_DocumentationPlan.html (accessed on 22 December 2020).
- AMAP. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017; 269p. [Google Scholar]
- Box, J.E.; Colgan, W.T.; Christensen, T.R.; Schmidt, N.M.; Lund, M.; Parmentier, F.-J.W.; Brown, R.; Bhatt, U.S.; Euskirchen, E.S.; Romanovsky, V.E.; et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019, 14, 045010. [Google Scholar] [CrossRef]
- Bader, J.; Mesquita, M.D.S.; Hodges, K.I.; Keenlyside, N.; Østerhus, S.; Miles, M. A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmos. Res. 2011, 101, 809–834. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3, and observations. Geophys. Res. Lett. 2012, 39, L16502. [Google Scholar] [CrossRef] [Green Version]
- Olonscheck, D.; Mauritsen, T.; Notz, D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci. 2012, 12, 430–434. [Google Scholar] [CrossRef]
- Döscher, R.; Vihma, T.; Maksimoich, E. Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmos. Chem. Phys. 2014, 14, 13571–13600. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Stroeve, J. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos. Trans. R. Soc. A 2015, 373, 20140159. [Google Scholar] [CrossRef] [Green Version]
- Cvijanovic, I.; Caldeira, K. Atmospheric impacts of sea ice decline in CO2 induced global warming. Clim. Dyn. 2015, 44, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, G.V.; Glok, N.I.; Smirnov, A.V. On assessment of the relationship between changes of sea ice extent and climate in the Arctic. Int. J. Climatol. 2016, 36, 3407–3412. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Glok, N.I.; Vyazilova, A.E.; Kharlanenkova, N.E. Climate change in the Arctic: Causes and mechanisms. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012002. [Google Scholar] [CrossRef]
- Meredith, M.M.; Sommerkorn, S.; Cassotta, C.; Derksen, A.; Ekaykin, A.; Hollowed, G.; Kofinas, A.; Mackintosh, J.; Melbourne-Thomas, M.M.C.; Muelbert, G.; et al. Polar regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; IPCC: Geneve, Switzerland, 2021; Available online: https://www.ipcc.ch/srocc/chapter/chapter-3-2 (accessed on 17 March 2021).
- Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. Clim. Dyn. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Alexeev, V.A.; Langen, P.L.; Bates, J.R. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim. Dyn. 2005, 24, 655–666. [Google Scholar] [CrossRef]
- Bekryaev, R.V.; Polyakov, I.V.; Alexeev, V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 2010, 23, 3888–3906. [Google Scholar] [CrossRef]
- Larsen, J.N.; Anisimov, O.A.; Constable, A.; Hollowed, A.B.; Maynard, N.; Prestrud, P.; Prowse, T.D.; Stone, J.M.R. Polar regions. Part B: Regional aspects. Contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1567–1612. [Google Scholar]
- Lee, S. A theory for polar amplification from a general circulation perspective. Asia-Pac. J. Atmos. Sci. 2014, 50, 31–43. [Google Scholar] [CrossRef]
- Alekseev, G.V. Development and amplification of global warming in the Arctic. Fundam. Appl. Climatol. 2015, 1, 11–26. [Google Scholar]
- Previdi, M.; Janoski, T.P.; Chiodo, G.; Smith, K.L.; Polvani, L.M. Arctic amplification: A rapid response to radiative forcing. Geophys. Res. Lett. 2020, 47, e2020GL089933. [Google Scholar] [CrossRef]
- Hall, R.J.; Hanna, E.; Chen, L. Winter arctic amplification at the synoptic timescale, 1979–2018, its regional variation and response to tropical and extratropical variability. Clim. Dyn. 2021, 56, 457–473. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Laîné, A.; Yoshimori, M.; Abe-Ouchi, A. Surface Arctic amplification factors in CMIP5 models: Land and oceanic surfaces and seasonality. J. Clim. 2016, 29, 3297–3316. [Google Scholar] [CrossRef]
- Goosse, H.; Kay, J.E.; Armour, K.C.; Bodas-Salcedo, A.; Chepfer, H.; Docquier, D.; Jonko, A.; Kushner, P.J.; Lecomte, O.; Massonnet, F.; et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 2018, 9, 1919. [Google Scholar] [CrossRef] [PubMed]
- Heinze, C.; Eyring, V.; Friedlingstein, P.; Jones, C.; Balkanski, Y.; Collins, W.; Fichefet, T.; Gao, S.; Hall, A.; Ivanova, D.; et al. ESD reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth Syst. Dyn. 2019, 10, 379–452. [Google Scholar] [CrossRef] [Green Version]
- Notz, D.; SIMIP Community. Arctic sea ice in CMIP6. Geophys. Res. Lett. 2020, 47, e2019GL086749. [Google Scholar] [CrossRef]
- Matveev, L.T. Fundamentals of General Meteorology: Physics of the Atmosphere; Israel Program for Scientific Translation: Jerusalem, Israel, 1967; 720p. [Google Scholar]
- Hartmann, D.L. Global Physical Climatology; Academic Press: New York, NY, USA, 1994; 408p. [Google Scholar]
- Budyko, M.I. Climate and Life; Academic Press: London, UK, 1974; 507p. [Google Scholar]
- Monin, A.S. An Introduction of the Theory of Climate; Springer: Dordrecht, The Netherlands, 1986; 261p. [Google Scholar]
- Serreze, M.C.; Barry, R.G. The Arctic Climate System, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014; 415p. [Google Scholar]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: New York, NY, USA, 1992; 520p. [Google Scholar]
- Mayer, M.; Tietsche, S.; Haimberger, L.; Tsubouchi, T.; Mayer, J.; Zuo, H. An improved estimate of the coupled energy budget. J. Clim. 2019, 32, 7915–7934. [Google Scholar] [CrossRef]
- Budyko, M.I. The effect of solar radiation variations on the climate of the Earth. Tellus 1969, 21, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Sellers, W.D. A global climatic model based on energy balance of the Earth-atmosphere system. J. Appl. Meteorol. 1969, 8, 392–400. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Slater, A.G.; Steele, M.; Zhang, J.; Trenberth, K.E. The large-scale energy budget of the arctic. J. Geophys. Res. 2007, 112, D11122. [Google Scholar] [CrossRef] [Green Version]
- Oort, A.H.; Peixoto, J.P. The annual cycle of the energetics of the atmosphere on a planetary scale. J. Geophys. Res. 1974, 79, 2705–2719. [Google Scholar] [CrossRef]
- Nakamura, N.; Oort, A.H. Atmospheric heat budgets of the polar regions. J. Geophys. Res. 1988, 93, 9510–9524. [Google Scholar] [CrossRef]
- Porter, D.F.; Cassano, J.J.; Serreze, M.C.; Kindig, D.N. New estimates of the large-scale arctic atmospheric energy budget. J. Geophys. Res. 2010, 115, D08108. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.; Haimberger, L. Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Clim. 2012, 25, 734–752. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.; Koumoutsaris, S.; Zahn, M.; Berrisford, P. The changing energy balance of the polar regions in a warmer climate. J. Clim. 2012, 26, 3112–3129. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Kuzmina, S.I.; Urazgildeeva, A.V.; Bobylev, L.P. Impact of atmospheric heat and moisture transport on Arctic warming in winter. Fundam. Appl. Climatol. 2016, 1, 43–63. [Google Scholar] [CrossRef]
- Armour, K.C.; Siler, N.; Donohoe, A.; Roe, G.H. Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Clim. 2019, 32, 3655–3680. [Google Scholar] [CrossRef]
- Sorteberg, A.; Walsh, J. Seasonal cyclone variability at 70° N and its impact on moisture transport into the Arctic. Tellus 2008, 60A, 570–586. [Google Scholar] [CrossRef]
- Alekseev, G.V. Arctic dimension of global warming. J. ICE Snow 2014, 54, 53–68. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Kuzmina, S.I.; Glok, N.I.; Vyazilova, A.E.; Ivanov, N.E.; Smirnov, A.V. Influence of Atlantic on the warming and reduction of sea ice in the Arctic. J. ICE Snow 2017, 57, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Held, I.M.; Hoskins, B.J. Large-scale eddies and the general circulation of the atmosphere. Adv. Geophys. 1985, 28, 3–31. [Google Scholar]
- Grotjahn, R. Baroclinic Instability. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Curry, J.A., Pyle, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2003; pp. 419–467. [Google Scholar]
- Lorenz, E.N. Available potential energy and the maintenance of the general circulation. Tellus 1955, 7, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Soldatenko, S. Influence of atmospheric static stability and meridional temperature gradient on the growth in amplitude of synoptic-scale unstable waves. Atmos. Ocean. Phys. 2014, 50, 554–561. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Singh, M.S. Extratropical cyclones in idealized simulations of changed climates. J. Clim. 2015, 28, 9373–9392. [Google Scholar] [CrossRef] [Green Version]
- Frierson, D.M.W. Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett. 2006, 33, L24816. [Google Scholar] [CrossRef] [Green Version]
- Karamperidou, C. Surface temperature gradients as diagnostic indicators of midlatitude circulation dynamics. J. Clim. 2012, 25, 4154–4171. [Google Scholar] [CrossRef] [Green Version]
- Harvey, B.; Shaffrey, L.; Woollings, T. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 models. Clim. Dyn. 2014, 43, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Soldatenko, S. Estimated impacts of climate change on eddy meridional moisture transport in the atmosphere. Appl. Sci. 2019, 9, 4992. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R. An Introduction to Dynamic Meteorology, 4th ed.; Academic Press: New York, NY, USA, 2004; 552p. [Google Scholar]
- Soldatenko, S.; Tingwell, C. The sensitivity of characteristics of large scale baroclinic unstable waves in southern hemisphere to the underlying climate. Adv. Meteorol. 2013, 981271, 10. [Google Scholar] [CrossRef]
- Blackmon, M.L.; White, G.H. Zonal wavenumber characteristics of Northern Hemisphere transient eddies. J. Atmos. Sci. 1982, 39, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Akperov, M.G.; Mokhov, I.I. Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime. Atmos. Ocean. Phys. 2013, 49, 129–136. [Google Scholar] [CrossRef]
- Hernandez-Deckers, D.; Von Storch, J.-S. Impact of the warming patterns on global energetics. J. Clim. 2012, 25, 5223–5240. [Google Scholar] [CrossRef]
- Soldatenko, S.A.; Chichkine, D. Climate model sensitivity with respect to parameters and external forcing. In Topics in Climate Modeling; Hromadka, T., Rao, P., Eds.; Intech Publishing: Rijeka, Croatia, 2016; pp. 105–135. [Google Scholar]
- Colman, R.; Soldatenko, S. Understanding the links between climate feedbacks, variability and change using a two-layer energy balance model. Clim. Dyn. 2020, 54, 3441–3459. [Google Scholar] [CrossRef]
- Roe, G. Feedbacks, Timescales and Seeing Red. Annu. Rev. Earth Planet. Sci. 2009, 37, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Boeke, R.C.; Taylor, P.C.; Sejas, S.A. On the nature of the Arctic’s positive lapse-rate feedback. Geophys. Res. Lett. 2021, 48, e2020GL091109. [Google Scholar] [CrossRef]
- Block, K.; Schneider, F.A.; Mülmenstädt, J.; Salzmann, M.; Quaas, J. Climate models disagree on the sign of total radiative feedback in the Arctic. Tellus A Dyn. Meteorol. Ocean. 2020, 72, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Årthur, M.; Eldevik, T.; Smedsrud, L.H. The role of Atlantic heat transport in future Arctic winter sea ice loss. J. Clim. 2019, 32, 3327–3341. [Google Scholar] [CrossRef]
- Docquier, D.; Fuentes-Franco, R.; Wyser, K.; Koenigk, T. Interactions between ocean heat transport and Arctic sea ice. In Proceedings of the EGU General Assembly, Online, 4–8 May 2020; Available online: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-3352.html (accessed on 17 March 2021). [CrossRef]
- Soldatenko, S.A.; Matveev, L.T. On the effect of baroclinicity on the large-scale vortex formation in the atmosphere. Proc. USSR Acad. Sci. 1989, 308, 1103–1107. [Google Scholar]
- Hwang, Y.-T.; Frierson, D.M.W. Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett. 2010, 37, L24807. [Google Scholar] [CrossRef]
- Liang, M.; Czaja, A.; Graversen, R.; Tailleux, R. Poleward energy transport: Is the standard definition physically relevant at all time scales? Clim. Dyn. 2018, 50, 1785–1797. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldatenko, S. Effects of Global Warming on the Poleward Heat Transport by Non-Stationary Large-Scale Atmospheric Eddies, and Feedbacks Affecting the Formation of the Arctic Climate. J. Mar. Sci. Eng. 2021, 9, 867. https://doi.org/10.3390/jmse9080867
Soldatenko S. Effects of Global Warming on the Poleward Heat Transport by Non-Stationary Large-Scale Atmospheric Eddies, and Feedbacks Affecting the Formation of the Arctic Climate. Journal of Marine Science and Engineering. 2021; 9(8):867. https://doi.org/10.3390/jmse9080867
Chicago/Turabian StyleSoldatenko, Sergei. 2021. "Effects of Global Warming on the Poleward Heat Transport by Non-Stationary Large-Scale Atmospheric Eddies, and Feedbacks Affecting the Formation of the Arctic Climate" Journal of Marine Science and Engineering 9, no. 8: 867. https://doi.org/10.3390/jmse9080867
APA StyleSoldatenko, S. (2021). Effects of Global Warming on the Poleward Heat Transport by Non-Stationary Large-Scale Atmospheric Eddies, and Feedbacks Affecting the Formation of the Arctic Climate. Journal of Marine Science and Engineering, 9(8), 867. https://doi.org/10.3390/jmse9080867