Behavioral Intention towards Dietary Diversity among Adult People Living with HIV in Public Hospitals in Southwest Ethiopia Using Theory of Planned Behavior—An Explanatory Study
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area and Period
2.2. Study Population
2.3. Sample Size and Sampling Procedure
2.4. Data Collection Tools and Procedure
2.5. Data Processing and Analysis
2.6. Ethical Approval and Informed Consent
3. Results
3.1. Intention of Adult PLWHIV towards Dietary Diversity Behavior
3.2. Overall Descriptive Findings of Behavioral Intention of PLWHIV towards Dietary Diversity
3.3. Correlation of Dietary Diversity Behavioral Intention to Theory of Planned Behavior Constructs
3.4. Predictors of Intention towards Use of Dietary Diversity
3.5. Explanatory Findings
3.5.1. Lack of Food at Home
3.5.2. Problems of the Health System
3.5.3. Income Generation Opportunities
3.5.4. Individual Behavior
3.5.5. Absence of Food AID/Support
4. Discussions
5. Conclusions
5.1. Strength
5.2. Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIDS | Acquired immune deficiency syndrome |
ART | Antiretroviral therapy |
ASM | Appointment spacing model care |
BB | Behavioral belief |
BC | Behavioral control |
EBB | Evaluation of behavioral belief |
CI | Confidence intervals |
DATT | Direct attitude |
DDs | Dietary diversity score |
DSN | Direct subjective norm |
DPBC | Direct perceived behavioral control |
HAART | Highly active antiretroviral therapy |
HIV | Human immune deficiency virus |
IATT | Indirect attitude |
IPBC | Indirect perceived behavioral control |
ISN | Indirect subjective norm |
OIs | Opportunistic infections |
PLWHIV | People living with HIV |
PBC | Perceived behavioral control |
SP | Social pressure |
SN | Subjective norm |
TPB | Theory of planned behavior |
VIF | Variance inflation factor |
References
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decision Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I. Attitudes, Personality, and Behavior; Open University Press: Milton-Keynes, UK; Dorsey Press: Chicago, IL, USA, 1989. [Google Scholar]
- Mangili, A.; Murman, D.H.; Zampini, A.M.; Wanke, C.A.; Mayer, K.H. Nutrition and HIV Infection: Review of Weight Loss and Wasting in the Era of Highly Active Antiretroviral Therapy from the Nutrition for Healthy Living Cohort. Clin. Infect. Dis. 2006, 42, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Ahoua, L.; Umutoni, C.; Huerga, H.; Minetti, A.; Szumilin, E.; Balkan, S.; Olson, D.M.; Nicholas, S.; Pujades-Rodríguez, M. Nutrition outcomes of HIV-infected malnourished adults treated with ready-to-use therapeutic food in sub-Saharan Africa: A longitudinal study. J. Int. AIDS Soc. 2011, 14, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Food and Nutrition Technical Assistance. Available online: http://www.fantaproject.orgsites/default/files/resources/HDDS_v2_Sep06_0.pdf (accessed on 5 January 2018).
- Ogle, B.M.; Hung, P.H.; Tuyet, H.T. Significance of wild vegetables in micronutrient intakes of women in Vietnam: An analysis of food variety. Asia Pac. J. Clin. Nutr. 2001, 10, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Foote, J.A.; Murphy, S.P.; Wilkens, L.R.; Basiotis, P.P.; Carlson, A. Dietary Variety Increases the Probability of Nutrient Adequacy among Adults. J. Nutr. 2004, 134, 1779–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukusuba, J.; Kikafunda, J.K.; Whitehead, R.G. Food security status in households of people living with HIV/AIDS (PLWHA) in a Ugandan urban setting. Br. J. Nutr. 2007, 98, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Castleman, T.; Seumo-Fosso, E.; Cogill, B. Food and Nutrition Implications of Antiretroviral Therapy in Resource Limited Settings; Food and Nutrition Technical Assistance Project (FANTA) Academy for Educational Development: Washington, DC, USA, 2004; Available online: https://www.researchgate.net/publication/242533356 (accessed on 20 May 2008).
- Central Statistical Authority Addis Ababa, Ethiopia; ORC Macro. Ethiopia Demographic and Health Survey. Available online: https://www.dhsprogram.com/pubs/pdf/FR118/FR118.pdf (accessed on 30 March 2012).
- de Pee, S.; Semba, R.D. Role of nutrition in HIV infection: Review of evidence for more effective programming in resource-limited settings. Food Nutr. Bull. 2010, 31, S313–S344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalichman, S.C.; Cherry, C.; Amaral, C.; White, D.; Kalichman, M.O.; Pope, H.; Swetsze, C.; Jones, M.; Macy, R. Health and treatment implications of food insufficiency among people living with HIV/AIDS, Atlanta, Georgia. J. Urban Health. 2010, 87, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Di Bari, F.; Bahwere, P.; Le Gall, I.; Guerrero, S.; Mwaniki, D.; Seal, A. A qualitative investigation of adherence to nutritional therapy in malnourished adult AIDS patients in Kenya. Public Heal. Nutr. 2011, 15, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Adal, M. Systematic review on HIV situation in Addis Ababa, Ethiopia. BMC Public Health 2019, 19, 1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global HIV Prevention working Group. Behavior change and HIV prevention: Reconsidetions for the 21st Century. Available online: https://www.malecircumcision.org/resource/global-hiv-prevention-working-group-behavior-change-and-hiv-prevention-reconsiderations (accessed on 1 July 2021).
- Uthman, O.A. Prevalence and pattern of HIV-related malnutrition among women in sub-Saharan Africa: A meta-analysis of demographic health surveys. BMC Public Health 2008, 8, 226–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Braun, J.; Olofinbiyi, T. Case Study #7-4, “Famine and Food Insecurity in Ethiopia”. In Food Policy for Developing Countries: Case Studies; Pinstrup-Andersen, P., Cheng, F., Eds.; Cornell University Press: Ithaca, NY, USA, 2017; Available online: http://cip.cornell.edu/dns.gfs/1200428184 (accessed on 21 November 2017).
- Rawat, R.; Kadiyala, S.; McNamara, P.E. The impact of food assistance on weight gain and disease progression among HIV-infected individuals accessing AIDS care and treatment services in Uganda. BMC Public Health 2010, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Tiyou, A.; Belachew, T.; Alemseged, F.; Biadgilign, S. Food insecurity and associated factors among HIV-infected individuals receiving highly active antiretroviral therapy in Jimma zone Southwest Ethiopia. Nutr. J. 2012, 11, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, H.L.; Moreno-Leguizamon, C.J. Nutrition education and counselling as strategic interventions to improve health outcomes in adult outpatients with HIV: A literature review. Afr. J. AIDS Res. 2010, 9, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Hailemariam, S.; Bune, G.T.; Ayele, H.T. Malnutrition: Prevalence and its associated factors in People living with HIV/AI DS, in Dilla University Referr al Hospital. Arch. Public Health 2013, 12, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Kiene, S.; Christie, S.; Cornman, D.; Fisher, W.; Shuper, P.; Pillay, S.; Friedland, G.H.; Fisher, J.D. risk behavior among HIV-positive individuals in clinical care in urban KwaZulu-Natal, South Africa. AIDS 2006, 27, 1881–1984. [Google Scholar]
- Kozal, M.J.; Amico, K.R.; Chiarella, J.; Schreibman, T.; Cornman, D.; Fisher, W.; Fisher, J.; Friedland, G. Antiretroviral resistance and high-risk transmission behavior among HIV-positive patients in clinical care. AIDS 2004, 18, 2185–2189. [Google Scholar] [CrossRef]
- Liu, E.; Semu, H.; Hawkins, C.; Aveika, A.; Nyamsangia, S.; Mtasiwa, D.; Spiegelman, N.; Chalamilla, G.; Mehta, S.; Fawzi, W. Nutritional Status and Mortality Among HIV-Infected Patients Receiving Antiretroviral Therapy in Tanzania. J. Infect. Dis. 2011, 204, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Ivers, L.C.; Chang, Y.; Jerome, G.J.; Freedberg, K.A. Food assistance is associated with improved body mass index, food security and attendance at clinic in an HIV program in central Haiti: A prospective observational cohort study. AIDS Res. 2010, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mirkuzie, A.H.; Sisay, M.M.; Moland, K.M.; Astrøm, A.N. Applying the theory of planned behaviour to explain HIV testing in antenatal settings in Addis Ababa—A cohort study. BMC Health Serv. Res. 2011, 11, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, J.M.; Cohen, C.R.; Young, S.L.; Wamuyu, C.; Armes, M.N.; Otieno, B.O.; Leslie, H.H.; Dandu, M.; Stewart, C.C.; Bukusi, E.A.; et al. Descriptive Characteristics and Health Outcomes of the Food by Prescription Nutrition Supplementation Program for Adults Living with HIV in Nyanza Province, Kenya. PLoS ONE 2014, 9, e91403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahwere, P.; Sadler, K.; Collins, S. Acceptability and effectiveness of chickpea sesame-based ready-to-use therapeutic food in malnourished HIV-positive adults. Patient Prefer. Adherence 2009, 3, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndekha, M.J.; van Oosterhout, J.J.; Zijlstra, E.E.; Manary, M.; Saloojee, H.; Manary, M.J. Supplementary feeding with either ready-to-use fortified spread or cornsoy blend in wasted adults starting antiretroviral therapy in Malawi: Randomized, investigator blinded, controlled trial. BMJ 2009, 338, b1867. [Google Scholar] [CrossRef] [Green Version]
- Kessler, L.; Daley, H.; Malenga, G.; Graham, S. The impact of the human immunodeficiency virus type 1 on the management of severe malnutrition in Malawi. Ann. Trop. Paediatr. 2000, 20, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, R.A.; Sinkala, M.; Megazinni, K.; Lawson-Marriott, S.; Washington, S.; Chi, B.H.; Tambatamba-Chapula, B.; Levy, J.; Stringer, E.M.; Mulenga, L.; et al. A Pilot Study of Food Supplementation to Improve Adherence to Antiretroviral Therapy among Food-Insecure Adults in Lusaka, Zambia. JAIDS J. Acquir. Immune Defic. Syndr. 2008, 49, 190–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikiema, L.O.; Huybregts, L.L.; Kolsteren, P.P.; Lanou, H.H.; Tiendrebeogo, S.S.; Bouckaert, K.K.; Kouanda, S.; Sondo, B.; Roberfroid, D.D. Treating moderate acute malnutrition in first-line health services: An effectiveness cluster-randomized trial in Burkina Faso. Am. J. Clin. Nutr. 2014, 100, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Omer, S.; Haidar, J. Applicability of the TPB in predicting intended use of voluntary HIV and dietary diversity among teachers of Harari Region, Ethiopia. Ethiop. J. Health Dev. 2016, 24, 96–102. [Google Scholar]
- Palella, F.J.; Delaney, K.M.; Moorman, A.C.; Loveless, M.O.; Fuhrer, J.; Satten, G.; Aschman, D.J.; Holmberg, S.D. Declining Morbidity and Mortality among Patients with Advanced Human Immunodeficiency Virus Infection. N. Engl. J. Med. 1998, 338, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Posse, M.; Tirivayi, N.; Saha, U.R.; Baltussen, R. The effect of Food Assistance on Adherence to Antiretroviral Therapy among HIV/AIDS Patients in Sofala Province, in Mozambique: A Retrospective Study. J. AIDS Clin. Res. 2013, 4, 198. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, C. Reducing mortality with co-trimoxazole preventivetherapy at initiation of antiretroviral therapy in South Africa. AIDS 2010, 24, 1709–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovniak, L.; Anderson, E.; Winett, R.; Stephens, R. Social cognitive determinants of physical activity in young adults: A prospective structural equation analysis. Ann. Behav. Med. 2002, 24, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Swindale, A.; Bilinsky, P. Household Dietary Diversity Score (HDDS) for Measurement of Household Food Access: Indicator Guide). Washington, DC: Food and Nutrition Technical Assistance III Project. Available online: http://www.fantaproject.org (accessed on 1 September 2006).
- Soyiri, I.N.; Laar, A.K. Dietary diversity approach: A key component to the management of HIV/AIDS patients in Ghana. In Proceedings of the 15th International Conference on AIDS, Bangkok, Thailand, 11–16 July 2004; Volume 17, pp. 11–16. [Google Scholar]
- Muthamia, O.G.; Mwangi, A.M.; Mbugua, S.K. The effects of nutritional knowledge on the dietary practices of people living with HIV in Kayole Division, Nairobi-Kenya. Int. J. Nutr. Food Sci. 2014, 3, 597–601. [Google Scholar] [CrossRef]
- Taylor, A. Outpatient therapeutic program (OTP). An evaluation of a new SC UK venture in North Darfur, Sudan (2001). Available online: https://www.ennonline.net/page/renderforpdf/3614 (accessed on 1 July 2021).
- Tony, C.; Eleonore, S.; Bruce, C. Food and Nutrition Implications of Antiretroviral Therapy in Resource Limited Settings; Report on the Global HIV/AIDS Epidemic Update; Food and Nutrition Technical Assistance Project, Academy for Educational Developmenta: Washington, DC, USA; UN-AIDS: Geneva, Switzerland, 2016; pp. 10–23. [Google Scholar]
- USAID. HIV/AIDS Health Profile, Sub Saharan Africa. 2012. Available online: http://pdf.usaid.gov/pdf_docs/pdacu659.pdf (accessed on 1 July 2021).
- Federal Ministry of Health-FMOH Ethiopia. Program Implementation Manual of National Nutrition Program (NNP) I, 2008. Available online: https://extranet.who.int/nutrition/gina/sites/default/filesstore/ETH%202013%20National%20Nutrition%20Programme.pdf (accessed on 1 July 2021).
- Belachew, T.; Nekatibeb, H. Assessment of outpatient therapeutic programme for severe acute malnutrition in three regions of Ethiopia. East Afr. Med. J. 2008, 84, 577–578. [Google Scholar] [CrossRef]
- Tafese, Z.; Birhan, Y.; Abebe, H. Nutritional care and support among adults living with HIV at Hawassa Referral Hospital, southern Ethiopia: A qualitative study. Afr. J. AIDS Res. 2013, 12, 105–111. [Google Scholar] [CrossRef]
Variables | Frequency | Percentage (%) | |
---|---|---|---|
Sex | Female | 196 | 48.6 |
Male | 207 | 50.4 | |
Residence | Rural | 167 | 41.4 |
Urban | 236 | 58.6 | |
Age in Years | 18–24 | 84 | 20.8 |
25–34 | 140 | 34.7 | |
35–44 | 111 | 27.5 | |
45 | 68 | 16.9 | |
Marital Status | Single | 46 | 11.4 |
Married | 233 | 57.8 | |
Divorced | 81 | 20.1 | |
Separated | 26 | 6.5 | |
Widowed | 20 | 4.2 | |
Religion | Muslim | 186 | 46.2 |
Orthodox | 142 | 34.9 | |
Protestant | 72 | 17.7 | |
Others | 3 | 0.7 | |
Educational Status | Cannot read and write | 51 | 12.7 |
Read and write | 47 | 11.7 | |
5–8 Primary | 64 | 15.9 | |
9–12(Secondary) | 97 | 24.1 | |
Collage and above | 144 | 35.7 | |
Employment Status | Merchant | 155 | 38.5 |
Government employee | 122 | 30.0 | |
Farmer | 98 | 24.3 | |
Others | 28 | 6.9 | |
Food Security Situation | Secure | 128 | 31.8 |
Insecure without hunger | 123 | 30.5 | |
Insecure with moderate hunger | 84 | 20.8 | |
Insecure with severe hunger | 68 | 16.8 |
Components | Number | Items | Scale range | Scale Mean (SD) | |
---|---|---|---|---|---|
Direct SN | 403 | 5 | 5–20 | 15.55 | (3.47) |
Intention | 403 | 5 | 5–20 | 10.55 | (3.82) |
Direct PBC | 403 | 5 | 5–28 | 20.40 | (7.14) |
Direct attitude | 403 | 5 | 5–28 | 23.26 | (6.19) |
Motivation to comply | 403 | 5 | 5–25 | 16.37 | (7.06) |
Control belief | 403 | 5 | 5–25 | 16.75 | (4.76) |
Behavioral belief (BB) | 403 | 6 | 6–30 | 25.47 | (4.24) |
Evaluation of behavioral belief (EBB) | 402 | 6 | 6–30 | 22.26 | (5.36) |
Indirect attitude = (BB)i(EBB)i | 401 | 6 | 6–150 | 92.43 | (33.19) |
Normative belief (NB) | 403 | 6 | 6–30 | 23.82 | (5.21) |
Motivation to comply (MC) | 402 | 6 | 6–30 | 21.15 | (5.74) |
Indirect SN = (NB)i(MC)i | 403 | 6 | 6–150 | 79.55 | (32.99) |
Control belief (CB) | 401 | 6 | 6–30 | 24.85 | (5.19) |
Power of control (PC) | 403 | 6 | 6–30 | 21.94 | (5.87) |
Indirect PBC = (CB)i(PC)i | 403 | 6 | 6–150 | 52.45 | (28.52) |
Variables | Frequency in % | Mean | SD | Min. | Max. |
---|---|---|---|---|---|
Behavioral belief | |||||
Favorable | 60.70% | 4.35 | 0.68 | 1.65 | 5 |
Unfavorable | 39.30% | ||||
Outcome evaluation | |||||
Desirable | 59.70% | 4.48 | 0.76 | 1 | 5 |
Undesirable | 40.30% | ||||
Normative belief | |||||
Perceived positively | 50.70% | 3.61 | 0.75 | 1 | 5 |
Perceived negatively | 49.30% | ||||
Motivation to comply | |||||
Good | 50.50% | 3.74 | 0.88 | 1 | 5 |
Bad | 49.50% | ||||
Control belief strength | |||||
Facilitating | 47.50% | 3.88 | 0.76 | 1 | 5 |
Hindering | 52.50% | ||||
Control belief power | |||||
Above the mean | 54.00% | 3.75 | 1.14 | 1 | 5 |
Below the mean | 46.00% | ||||
Intention to use DDs | |||||
Good | 48.20% | 3.68 | 1.33 | 1 | 5 |
Bad | 52.80% | ||||
Attitude to DDs | |||||
Good | 52.20% | 74.62 | 17.59 | 17 | 100 |
Bad | 48.80% | ||||
Subjective norm | |||||
High value to S/P | 59.40% | 74.36 | 28.19 | 9 | 125 |
Low value to S/P | 40.60% | ||||
Perceived BC | |||||
Perceived easy S/P | 60.20% | 60.12 | 22.66 | 8 | 100 |
Perceived difficulty S/P | 39.80% |
Components | DATT | DSN | DPBC | IATT | ISN | IPBC |
---|---|---|---|---|---|---|
Attitude | 0.63 ++ | |||||
Subjective norm | 0.42 ++ | 1 | ||||
PBC | 0.46 ++ | 0.39 ++ | 1 | |||
IATT | 0.57 ++ | 0.49 + | 0.38 + | 1 | ||
ISN | 0.24 + | 0.52 ++ | 0.25 + | 0.36 + | 1 | |
Intention | 0.18 ++ | 0.25 ++ | 0.45 ++ | 0.31 ++ | 0.30 ++ | 1 |
Variables | Unstandardized | Standardized | T | 95% Confidence | p-Value |
---|---|---|---|---|---|
β Coefficients | β Coefficients | Intervals | |||
Constant | 0.57 | 3.37 | 0.873 | (1.86, 5.61) | <0.001 |
Sociodemography | 0.85 | 0.038 | 9.360 | (−0.86, 3.21) | <0.001 |
Direct attitude | 0.92 | 0.196 | 7.033 | (0.05, 0.22) | <0.01 |
Direct s/norm | 0.135 | 0.39 | 4.887 | (0.42, 0.57) | <0.001 |
Direct PBC | 0.234 | 0.048 | 3.352 | (−0.04, 0.12) | 0.011 |
Motivation to comply | 0.222 | 0.03 | 2.674 | (−0.08, 0.14) | 0.563 |
Control belief | 0.291 | −0.029 | 3.418 | (−0.12, 0.06) | 0.471 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teklehaimanot, A.N.; Belachew, T.; Gudina, E.K.; Getnet, M.; Amdisa, D.; Dadi, L.S. Behavioral Intention towards Dietary Diversity among Adult People Living with HIV in Public Hospitals in Southwest Ethiopia Using Theory of Planned Behavior—An Explanatory Study. Challenges 2021, 12, 18. https://doi.org/10.3390/challe12020018
Teklehaimanot AN, Belachew T, Gudina EK, Getnet M, Amdisa D, Dadi LS. Behavioral Intention towards Dietary Diversity among Adult People Living with HIV in Public Hospitals in Southwest Ethiopia Using Theory of Planned Behavior—An Explanatory Study. Challenges. 2021; 12(2):18. https://doi.org/10.3390/challe12020018
Chicago/Turabian StyleTeklehaimanot, Aderajew Nigusse, Tefera Belachew, Esayas Kebede Gudina, Masrie Getnet, Demuma Amdisa, and Lelisa Sena Dadi. 2021. "Behavioral Intention towards Dietary Diversity among Adult People Living with HIV in Public Hospitals in Southwest Ethiopia Using Theory of Planned Behavior—An Explanatory Study" Challenges 12, no. 2: 18. https://doi.org/10.3390/challe12020018
APA StyleTeklehaimanot, A. N., Belachew, T., Gudina, E. K., Getnet, M., Amdisa, D., & Dadi, L. S. (2021). Behavioral Intention towards Dietary Diversity among Adult People Living with HIV in Public Hospitals in Southwest Ethiopia Using Theory of Planned Behavior—An Explanatory Study. Challenges, 12(2), 18. https://doi.org/10.3390/challe12020018