Climate Change, Land Use, and the Decline in Traditional Fulani Cattle Practices: Drivers of Antimicrobial Resistance in Kwara, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Climate Change Impacts in Northern Nigeria
“[We] have difficulty sustaining irrigation system to sustain feeding, especially during dry season.”Farmer, FGDs
3.2. Depletion of Traditional Grazing Lands for Fulani Herdsmen, and Competition for Land Between Fulani Herders and Business-Oriented New Farmers
“The system has to change.”FGD participant
“The pot of dairy products coming from traditional practitioners is getting smaller.”Farmer, FGDs
3.3. Loss of Access to Traditional Grazing Lands Leads Fulani Herdsmen to Take Wage Labour on Commercial Farms
“Infection came when some cows graze on where our cattle graze.”Non-Fulani farmer, FGD
“Why we still have nomadic animals is because this is an ancient traditional method.”Fulani farmer, FGD
3.4. Increase in Commercial Farming and Move to Intensive Production Methods: Challenges and Opportunities
“I bought 10 Bororo [Fulani Red Cattle], cost of transport and purchase 103 k [naira] and sold for 450–480 k after 6 months.”Farm owner, FGD
“[The] problem in Nigeria [is that the] majority [are] after profit, we don’t look into major problems affecting the production system.”Fulani farm owner, FGD
“There was a machine milking (mechanical dairy farm) at Shonga, but this was discontinued due to climate.”Farmer, FGD
3.5. Inexperience (Fulani and Farm Owners) of Modern Farming Practices Leads to Use of Antibiotics as ‘Infrastructure’
“If milker is milking and the colour of milk is changed it is easily detected and tasted and then is it discarded if this.”Fulani farm owner, FGD
“For mastitis (breast), once there is a problem with milk, you’ll know from the taste, and you prevent the calf from suckling.”Fulani farm owner, FGD
“We’ll call the vet if they’re near.”Farm manager, FGD
“If the vet is near, we call them and if they are not near, you’ll go to them to explain to them and then you’ll get the drugs they describe to you to use.”Fulani farm owner, FGD
“Poor drug storage and fake drugs leading to inefficiency (under sunlight for long periods—expired). The sellers don’t disclose this to the farmers buying them.”Farm owner, FGD
“Most drugs are fake, hence we don’t get results well.”Fulani farm owner, FGD
3.6. Disease Management in Fulani Ethnoveterinary Tradition
“We are cattle rearers and we usually use our own local knowledge, for Gunya, we use Guinea corn and local oils and rub on the body.”Fulani farm owner, FGD
“[To prevent/treat mastitis] the nipple should be massaged before delivery so that dirts can be removed. Pus is not hygienic to calves.”Fulani farm owner, FGD
“When herbs are used, they work well except for Gunya which is highly tedious to manage due to case of recurrence about a month or two after.”Fulani farm owner, FGD
“We don’t know the traditional ways and their ways of preventing [mastitis].”Veterinarian, FGD
“I want to implore you that if you have proven effective herbal remedy [for snake bite] don’t hide it, inform the authority so that knowledge can be utilized effectively.”Veterinarian, FGD
“I’ve treated TB with herbs after diagnosis from a vet before.”Fulani farmer, FGD
“It is the elderly ones among the Fulani that knows most of the herbs. The knowledge of the herbs is waning along the lineage. They have the methods of application of these herbs.”Veterinarian, FGD
3.7. Use of Antibiotics to Manage Disease
“Who can afford it [testing]? One who cannot afford treatment can’t afford the [antibiotic susceptibility] testing (AST).”Farm owner, FGD
“Animals are owned on average by poor people.”Veterinarian, FGD
3.8. The End of the Causal Chain
3.9. Further Issues of Note
“The vets should educate the farmers.”Veterinary practitioner, key informant
“The problem is that they are uneducated, they need to be trained.”Farm manager, FGD
“They do not have the knowledge of these things [hygiene, especially in cow sheds], especially in [their] dialect.”Farm manager, FGD
“They are not careful enough.”Farm manager, FGD
“We make concoction to treat diseases immediately we notice and local herbs—by calling our father.”Fulani farmer, FGD
“If the BRE is proven effective would farmers be prepared to use them, despite all the local remedies and alternatives available?”Facilitator, FGD
“You’ve not introduced the drug yet, so we can’t know.”Farmer, FGD
“After trials, it would be introduced with results.”Facilitator, FGD
“[I would use it] as long as it is effective and cost effective.”Farmer, FGD
“Farmers like to give a new product a trial especially if it is relatively cheaper than existing similar products.”Drug seller, FGD
“We need to explain to them [the farmers] how these projects directly affect their income and how it can be of benefit to them and not only for AMR.”Veterinarian, FGD
4. Discussion
5. Conclusions
“I appreciate the stakeholder meeting because it makes us have a sense of belonging and coming back here after this discussion. I’ve learnt much of the traditional medication others use and shared knowledge of the vaccines I use with them.”Veterinarian, FGD
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Church, N.A.; McKillip, J.L. Antibiotic resistance crisis: Challenges and imperatives. Biologia 2021, 76, 1535–1550. [Google Scholar] [CrossRef]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic resistance: One health one world outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic stewardship in food-producing animals: Challenges, progress, and opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic use in livestock and residues in food—A public health threat: A review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Myers, S.S. Planetary health: Protecting human health on a rapidly changing planet. Lancet 2017, 390, 2860–2868. [Google Scholar] [CrossRef]
- Pongsiri, M.J.; Gatzweiler, F.W.; Bassi, A.M.; Haines, A.; Demassieux, F. The need for a systems approach to planetary health. Lancet Planet. Health 2017, 1, e257–e259. [Google Scholar] [CrossRef]
- Iyer, H.S.; DeVille, N.V.; Stoddard, O.; Cole, J.; Myers, S.S.; Li, H.; Elliott, E.G.; Jimenez, M.P.; James, P.; Golden, C.D. Sustaining planetary health through systems thinking: Public health’s critical role. SSM-Popul. Health 2021, 15, 100844. [Google Scholar] [CrossRef] [PubMed]
- Zywert, K. Sustainable Communities for a Healthy Planet; University of Toronto Press: Toronto, ON, Canada, 2024; ISBN 978-1-4875-4866-7. [Google Scholar]
- Guzmán, C.; Potter, T.; Aguirre, A.A.; Astle, B.; Barros, E.; Bayles, B.; Chimbari, M.; El-Abbadi, N.; Evert, J.; Hackett, F.; et al. The Planetary Health Education Framework; The Planetary Health Alliance: Washington, DC, USA, 2021; Available online: https://www.planetaryhealthalliance.org/education-framework (accessed on 10 August 2024).
- Bartlett, C.; Marshall, M.; Marshall, A. Two-eyed seeing and other lessons learned within a co-learning journey of bringing together indigenous and mainstream knowledges and ways of knowing. J. Environ. Stud. Sci. 2012, 2, 331–340. [Google Scholar] [CrossRef]
- Ratima, M.; Martin, D.; Castleden, H.; Delormier, T. Indigenous voices and knowledge systems–promoting planetary health, health equity, and sustainable development now and for future generations. Glob. Health Promot. 2019, 23, 3–5. [Google Scholar] [CrossRef]
- Redvers, N. The value of global indigenous knowledge in planetary health. Challenges 2018, 9, 30. [Google Scholar] [CrossRef]
- Zelenski, J.; Warber, S.; Robinson, J.M.; Logan, A.C.; Prescott, S.L. Nature Connection: Providing a Pathway from Personal to Planetary Health. Challenges 2023, 14, 16. [Google Scholar] [CrossRef]
- Anderson, M.; Ljungqvist, G.; Van Kessel, R.; Saint, V.; Mossialos, E. The socioeconomic drivers and impacts of Antimicrobial Resistance: Implications for policy and research. In Policy Brief 64. Health Systems and Policy Analysis; WHO Regional Office for Europe: Copenhagen, Denmark, 2024; Available online: https://www.amr-insights.eu/the-socioeconomic-drivers-and-impacts-of-antimicrobial-resistance-amr-implications-for-policy-and-research/ (accessed on 7 September 2024).
- Adamu, H.O.; Hussaini, R.O.; Obasuyi, C.; Anagha, L.I.; Okoduwa, G.O. Prevalence of mastitis in Nigerian livestock: A Review. Open Vet. Sci. 2020, 1, 20–29. [Google Scholar] [CrossRef]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.P.; Price, S. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet. Rec. 2013, 173, 475. [Google Scholar] [CrossRef]
- Abebe, R.; Markos, A.; Abera, M.; Mekbib, B. Incidence rate, risk factors, and bacterial causes of clinical mastitis on dairy farms in Hawassa City, southern Ethiopia. Sci. Rep. 2023, 13, 10945. [Google Scholar] [CrossRef]
- Nwigwe, C.; Okoruwa, V.; Adenegan, K.; Olajide, A. Technical efficiency of beef cattle production technologies in Nigeria: A stochastic frontier analysis. Afr. J. Agric. Res. 2016, 11, 5152–5161. [Google Scholar] [CrossRef]
- Olaniran, S.O. Community and Cultural Influence on Child Schooling: A Case Study of the Fulani people of Nigeria. J. Soc. Policy Issues 2024, 4, 54–59. [Google Scholar] [CrossRef]
- Ahmadu, H.J. Analysis on Some Causes and Consequences of North-South Migration of Fulani Pastoralists in Nigeria. Int. J. Innov. Res. Dev. 2018, 7. [Google Scholar] [CrossRef]
- World Bank Group Data. Fertility Rate, Total (Births per Woman)—Nigeria. Available online: https://data.worldbank.org/indicator/SP.DYN.TFRT.IN?locations=NG (accessed on 8 August 2024).
- Ojo, J.S. Governing “ungoverned spaces” in the foliage of conspiracy: Toward (re) ordering terrorism, from Boko Haram insurgency, Fulani militancy to banditry in northern Nigeria. Afr. Secur. 2020, 13, 77–110. [Google Scholar] [CrossRef]
- Saminu, I.; Yacoob, C.M.; Shukri, S.B. Identity and ‘Fulanizaion’ of Banditry in Nigeria: The Fulani as a ‘Criminal Tribe’. Zamfara J. Politics Dev. 2022, 3, 9. [Google Scholar]
- Mobolaji, J.W.; Fatusi, A.O.; Adedini, S.A. Ethnicity, religious affiliation and girl-child marriage: A cross-sectional study of nationally representative sample of female adolescents in Nigeria. BMC Public Health 2020, 20, 583. [Google Scholar] [CrossRef]
- Odoemena, K.G.; Walters, J.P.; Kleemann, H.M. A system dynamics model of supply-side issues influencing beef consumption in Nigeria. Sustainability 2020, 12, 3241. [Google Scholar] [CrossRef]
- Majekodunmi, A.O.; Dongkum, C.; Idehen, C.; Langs, D.T.; Welburn, S.C. Participatory epidemiology of endemic diseases in West African cattle–Ethnoveterinary and bioveterinary knowledge in Fulani disease control. One Health 2018, 5, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Schuftan, C.; Legge, D.; Sanders, D.; Nadimpally, S. A manifesto for planetary health. Lancet 2014, 383, 1459–1460. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G. Human, animal and planet health for complete sustainability. Animals 2021, 11, 1301. [Google Scholar] [CrossRef]
- Gruetzmacher, K.; Karesh, W.B.; Amuasi, J.H.; Arshad, A.; Farlow, A.; Gabrysch, S.; Jetzkowitz, J.; Lieberman, S.; Palmer, C.; Winkler, A.S.; et al. The Berlin principles on one health–Bridging global health and conservation. Sci. Total Environ. 2021, 764, 142919. [Google Scholar] [CrossRef]
- CABI One Health. Available online: https://www.cabidigitallibrary.org/journal/cabioh (accessed on 10 August 2024).
- Russell, J.B.; Mantovani, H.C. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. J. Mol. Microbiol. Biotechnol. 2002, 4, 347–355. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Technology acceptance model. J. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Sangaramoorthy, T.; Kroeger, K.A. Rapid Ethnographic Assessments: A Practical Approach and Toolkit for Collaborative Community Research; Routledge: London, UK, 2020. [Google Scholar] [CrossRef]
- Cole, J.; Mughal, A.N.; Eltholth, M.; Thomas, A.; Holmes, M. Transdisciplinary approaches to addressing factors that influence antimicrobial use in dairy cattle: A scoping review. Heliyon 2024, 10, e25550. [Google Scholar] [CrossRef]
- Eltholth, M.; Govindaraj, G.; Das, B.; Shanabhoga, M.B.; Swamy, H.M.; Thomas, A.; Cole, J.; Shome, B.R.; Holmes, M.A.; Moran, D. Factors influencing antibiotic prescribing behavior and understanding of antimicrobial resistance among veterinarians in Assam, India. Front. Vet. Sci. 2022, 9, 864813. [Google Scholar] [CrossRef]
- Foster, A.; Cole, J.; Farlow, A.; Petrikova, I.; Frumkin, H. Chapter 17. Planetary health ethics. In Planetary Health: Protecting Nature to Protect Ourselves; Myers, S., Frumkin, H., Eds.; Island Press: Washington, DC, USA, 2020; ISBN 978-1-61091-966-1. [Google Scholar]
- Cole, J.; Desphande, J. Poultry farming, climate change, and drivers of antimicrobial resistance in India. Lancet Planet. Health 2019, 3, e494–e495. [Google Scholar] [CrossRef]
- Eskdale, A.; Tholth, M.; Paul, J.D.; Desphande, J.; Cole, J. Climate stress impacts on livestock health: Implications for farming livelihoods and animal disease in Karnataka, India. CABI One Health 2022, 9. [Google Scholar] [CrossRef]
- Magnano San Lio, R.; Favara, G.; Maugeri, A.; Barchitta, M.; Agodi, A. How antimicrobial resistance is linked to climate change: An overview of two intertwined global challenges. Int. J. Environ. Res. Public Health 2023, 20, 1681. [Google Scholar] [CrossRef]
- Okon, E.M.; Falana, B.M.; Solaja, S.O.; Yakubu, S.O.; Alabi, O.O.; Okikiola, B.T.; Awe, T.E.; Adesina, B.T.; Tokula, B.E.; Kipchumba, A.K.; et al. Systematic review of climate change impact research in Nigeria: Implication for sustainable development. Heliyon 2021, 7, e07941. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.; Bickersteth, S. What’s planetary about health? An analysis of topics covered in The Lancet Planetary Health’s first year. Lancet Planet. Health 2018, 2, e283–e284. [Google Scholar] [CrossRef]
- Ezemenaka, K.E.; Ekumaoko, C.E. Contextualising Fulani-Herdsmen Conflict in Nigeria. Cent. Eur. J. Int. Secur. Stud. 2018, 12, 30–55, ISSN 1802-548X. Available online: https://www.cejiss.org/images/issue_articles/2018-volume-12-issue-2-0/ezemenaka-fulani-herdsmen-new.pdf (accessed on 20 October 2024).
- Idehen, R.O.; Ikuru, U.R. Migration and the emerging security challenges in West Africa: Case of Fulani herders/sedentary farmers conflicts in Nigeria. AFRREV IJAH Int. J. Arts Humanit. 2019, 8, 128–137. [Google Scholar] [CrossRef]
- Adebowale, A.S. Ethnic disparities in fertility and its determinants in Nigeria. Fertil. Res. Pract. 2019, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Blench, R. Pastoral Conflict and Supplying Nigeria with Meat: How Can the Paradox Be Resolved; Department of Philosophy and Religious Studies, Tansian University: Cambridge, UK, 2017. [Google Scholar]
- Oluwatayo, I.B.; Omowunmi, T.; Ojo, A.O. Land acquisition and use in Nigeria: Implications for sustainable food and livelihood security. In Land Use: Assessing the Past, Envisioning the Future; IntechOpen: London, UK, 2019; pp. 91–110. [Google Scholar] [CrossRef]
- Aduloju, O.T.; Akinbamijo, O.B.; Bako, A.I.; Anofi, A.O.; Otokiti, K.V. Spatial analysis of urban agriculture in the utilization of open spaces in Nigeria. Local Environ. 2024, 29, 932–950. [Google Scholar] [CrossRef]
- Ritchie, H. The Carbon Footprint of Foods: Are Differences Explained by the Impacts of Methane? Our World in Data. 2020. Available online: https://ourworldindata.org/carbon-footprint-food-methane (accessed on 30 September 2024).
- Ilyas, H.M.; Safa, M.; Bailey, A.; Rauf, S.; Pangborn, M. The carbon footprint of energy consumption in pastoral and barn dairy farming systems: A case study from Canterbury, New Zealand. Sustainability 2019, 11, 4809. [Google Scholar] [CrossRef]
- Zhuang, M.; Li, W. Greenhouse gas emission of pastoralism is lower than combined extensive/intensive livestock husbandry: A case study on the Qinghai-Tibet Plateau of China. J. Clean. Prod. 2017, 147, 514–522. [Google Scholar] [CrossRef]
- Cerri, C.C.; Moreira, C.S.; Alves, P.A.; Raucci, G.S.; de Almeida Castigioni, B.; Mello, F.F.; Cerri, D.G.; Cerri, C.E. Assessing the carbon footprint of beef cattle in Brazil: A case study with 22 farms in the State of Mato Grosso. J. Clean. Prod. 2016, 112, 2593–2600. [Google Scholar] [CrossRef]
- Kumar, S.B.; Arnipalli, S.R.; Ziouzenkova, O. Antibiotics in food chain: The consequences for antibiotic resistance. Antibiotics 2020, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance: Mitigation opportunities in livestock sector development. Animal 2017, 11, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, U.; Fisher, D.K.; Umetsu, C. Environmental effects of intensification of agriculture: Livestock production and regulation. Environ. Econ. Policy Stud. 2007, 8, 315–336. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Yuan, Y.; Xie, Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- Belwal, P.; Mathad, P. Antibiotics in Livestock Production: A Comprehensive Examination of Usage, Resistance, and Regulatory Imperatives for Enhanced Oversight. Rev. Electron. Vet. 2023, 24, 25–34. [Google Scholar]
- Rees, G.M.; Reyher, K.K.; Barrett, D.C.; Buller, H. ‘It’s cheaper than a dead cow’: Understanding veterinary medicine use on dairy farms. J. Rural Stud. 2021, 86, 587–598. [Google Scholar] [CrossRef]
- Bamaiyi, P.H. Factors militating against animal production in Nigeria. Int. J. Livest. Res. 2013, 3, 54–66. [Google Scholar] [CrossRef]
- Kelly, A.M.; Marshak, R.R. Veterinary medicine, global health. J. Am. Vet. Med. Assoc. 2007, 231, 1806–1808. [Google Scholar] [CrossRef]
- Chandler, C.I. Current accounts of antimicrobial resistance: Stabilisation, individualisation and antibiotics as infrastructure. Palgrave Commun. 2019, 5, 53. [Google Scholar] [CrossRef]
- Willis, L.D.; Chandler, C. Quick fix for care, productivity, hygiene and inequality: Reframing the entrenched problem of antibiotic overuse. BMJ Glob. Health 2019, 4, e001590. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.P.; Dwyer, C.M. Welfare assessment in extensive animal production systems: Challenges and opportunities. Anim. Welf. 2007, 16, 189–192. [Google Scholar] [CrossRef]
- Fraser, D. Toward a global perspective on farm animal welfare. Appl. Anim. Behav. Sci. 2008, 113, 330–339. [Google Scholar] [CrossRef]
- Innes, G.K.; Randad, P.R.; Korinek, A.; Davis, M.F.; Price, L.B.; So, A.D.; Heaney, C.D. External societal costs of antimicrobial resistance in humans attributable to antimicrobial use in livestock. Annu. Rev. Public Health 2020, 41, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Alhaji, N.B.; Babalobi, O.O. Participatory epidemiology of ethnoveterinary practices Fulani pastoralists used to manage contagious bovine pleuropneumonia and other cattle ailments in Niger State, Nigeria. J. Vet. Med. 2015, 2015, 460408. [Google Scholar] [CrossRef]
- Odongo, E.A.; Mutai, P.C.; Amugune, B.K.; Mungai, N.N. A systematic review of medicinal plants of Kenya used in the management of bacterial infections. Evid.-Based Complement. Altern. Med. 2022, 2022, 9089360. [Google Scholar] [CrossRef]
- Ng’ang’a, T.W.; Coulibaly, J.Y.; Crane, T.A.; Gachene, C.K.; Kironchi, G. Propensity to adapt to climate change: Insights from pastoralist and agro-pastoralist households of Laikipia County, Kenya. Clim. Chang. 2020, 161, 393–413. [Google Scholar] [CrossRef]
- Tinsley, J.H.; Gwiriri, L.C. Understanding the Representation of Pastoralism in Livestock-Related Climate Adaptation Policies in Ghana and Nigeria: A Review of Key Policy Documents. Nomadic Peoples 2022, 26, 83–105. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Isola, T.O. Antimicrobial usage by pastoralists in food animals in North-central Nigeria: The associated socio-cultural drivers for antimicrobials misuse and public health implications. One Health 2018, 6, 41–47. [Google Scholar] [CrossRef]
- Dognon, S.R.; Antoine-Moussiaux, N.; Douny, C.; Gustin, P.; Moula, N.; Scippo, M.L.; Youssao, A.K. The use of antibiotics in cattle in North-East Benin: Pharmaceutical inventory and risk practices of cattle breeders. Trop. Anim. Health Prod. 2018, 50, 1683–1699. [Google Scholar] [CrossRef]
- Sarkwa, F.O.; Timpong-Jones, E.C.; Assuming-Bediako, N.; Aikins, S.; Adogla-Bessa, T. The contribution of livestock production to climate change: A review. Livest. Res. Rural. Dev. 2016, 28, 37. [Google Scholar]
- Grodkowski, G.; Gołębiewski, M.; Slósarz, J.; Grodkowska, K.; Kostusiak, P.; Sakowski, T.; Puppel, K. Organic milk production and dairy farming constraints and prospects under the laws of the European Union. Animals 2023, 13, 1457. [Google Scholar] [CrossRef] [PubMed]
- Borriello, G.; Cagnotti, G.; Avedano, E.; Bergagna, S.; Iannello, P.; Di Muro, G.; Ferrini, S.; D’Angelo, A.; Bellino, C. Qualitative and quantitative monitoring of antibiotics on dairy cattle farms in relation to animal welfare indicators. Ital. J. Anim. Sci. 2023, 22, 760–768. [Google Scholar] [CrossRef]
- Zanon, T.; De Monte, E.; Gauly, M. Effects of cattle breed and production system on veterinary diagnoses and administrated veterinary medicine in alpine dairy farms. Ital. J. Anim. Sci. 2021, 20, 1126–1134. [Google Scholar] [CrossRef]
- Geels, F.W. The hygienic transition from cesspools to sewer systems (1840–1930): The dynamics of regime transformation. Res. Policy 2006, 35, 1069–1082. [Google Scholar] [CrossRef]
- Fischer, K.; Kokko, S.; McConville, J. No legitimacy: A study of private sector sanitation development in the Global South. Environ. Innov. Soc. Transit. 2021, 38, 68–78. [Google Scholar] [CrossRef]
- Iwu, C.D.; Patrick, S.M. An insight into the implementation of the global action plan on antimicrobial resistance in the WHO African region: A roadmap for action. Int. J. Antimicrob. Agents 2021, 58, 106411. [Google Scholar] [CrossRef]
- Mitchell, J.; Cooke, P.; Ahorlu, C.; Arjyal, A.; Baral, S.; Carter, L.; Dasgupta, R.; Fieroze, F.; Fonseca-Braga, M.; Huque, R.; et al. Community engagement: The key to tackling Antimicrobial Resistance (AMR) across a One Health context? Glob. Public Health 2022, 17, 2647–2664. [Google Scholar] [CrossRef]
- Kanan, M.; Ramadan, M.; Haif, H.; Abdullah, B.; Mubarak, J.; Ahmad, W.; Mari, S.; Hassan, S.; Eid, R.; Hasan, M.; et al. Empowering low-and middle-income countries to combat AMR by minimal use of antibiotics: A way forward. Antibiotics 2023, 12, 1504. [Google Scholar] [CrossRef]
- Chauhan, A.S.; George, M.S.; Chatterjee, P.; Lindahl, J.; Grace, D.; Kakkar, M. The social biography of antibiotic use in smallholder dairy farms in India. Antimicrob. Resist. Infect. Control 2018, 7, 60. [Google Scholar] [CrossRef]
- Klopatek, S.C.; Marvinney, E.; Duarte, T.; Kendall, A.; Yang, X.; Oltjen, J.W. Grass-fed vs. grain-fed beef systems: Performance, economic, and environmental trade-offs. J. Anim. Sci. 2022, 100, skab374. [Google Scholar] [CrossRef] [PubMed]
- Cinjel, N.D.; Oboromeni, W. The Fulani in Nigeria and their Herding System: Is it an Agro-Business or a Culture? J. Policy Dev. Stud. 2024, 15, 111–125. [Google Scholar] [CrossRef]
- Provenza, F.D.; Kronberg, S.L.; Gregorini, P. Is grassfed meat and dairy better for human and environmental health? Front. Nutr. 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Kisoo, L.; Muloi, D.M.; Oguta, W.; Ronoh, D.; Kirwa, L.; Akoko, J.; Fèvre, E.M.; Moodley, A.; Wambua, L. Practices and drivers for antibiotic use in cattle production systems in Kenya. One Health 2023, 17, 100646. [Google Scholar] [CrossRef] [PubMed]
- Kupczyński, R.; Bednarski, M.; Sokołowski, M.; Kowalkowski, W.; Pacyga, K. Comparison of Antibiotic Use and the Frequency of Diseases Depending on the Size of Herd and the Type of Cattle Breeding. Animals 2024, 14, 1889. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Shen, J.P.; Sun, Y.F.; Bai, Y.F.; Pan, H.; Li, Y.; Wang, Z.W.; Han, G.D.; Zhang, L.M.; He, J.Z. Grazing does not increase soil antibiotic resistome in two types of grasslands in Inner Mongolia, China. Appl. Soil Ecol. 2020, 155, 103644. [Google Scholar] [CrossRef]
- Azabo, R.; Dulle, F.; Mshana, S.E.; Matee, M.; Kimera, S. Antimicrobial use in cattle and poultry production on occurrence of multidrug resistant Escherichia coli. A systematic review with focus on sub-Saharan Africa. Front. Vet. Sci. 2022, 9, 1000457. [Google Scholar] [CrossRef]
- Uzoka, N.B.; Monday-Chukwu, O.; Onwe, D.A.; Maduforo, S.A.; Nwele, M.O.; Onyebuchi, F. Knowledge, attitude and treatment practices associated with the control of African animal trypanosomiasis among Fulani cattle herders in selected areas of Enugu State, Nigeria. Anim. Res. Int. 2022, 19, 4428–4433. [Google Scholar]
- Busari, I.O.; Soetan, K.O.; Aiyelaagbe, O.O.; Babayemi, O.J. Ethnoveterinary study of plants used by Fulani agropastoralists for treating livestock diseases in Ido agrarian community of Oyo State, Nigeria. Acta Ecol. Sin. 2021, 41, 560–565. [Google Scholar] [CrossRef]
- Hilou, A.; Rappez, F.; Duez, P. Ethnoveterinary management of cattle helminthiasis among the Fulani and the Mossi (Central Burkina Faso): Plants used and modes of use. Int. J. Biol. Chem. Sci. 2014, 8, 2207–2221. [Google Scholar]
- Offiah, N.V.; Dawurung, C.J.; Oladipo, O.O.; Makoshi, M.S.; Makama, S.; Elisha, I.L.; Gotep, J.G.; Samuel, A.L.; Shamaki, D. Survey of herbal remedies used by Fulani herdsmen in the management of animal diarrhoea in Plateau State, Nigeria. J. Med. Plants Res. 2012, 6, 4625–4632. [Google Scholar]
- Conway, A.; Nieman, C. Small-scale silvopasture: Addressing urban and peri-urban livestock challenges in the United States with agroforestry practices. Urban Agric. Reg. Food Syst. 2022, 7, e20023. [Google Scholar] [CrossRef]
- Pent, G.J.; Fike, J.H. Lamb productivity on stockpiled fescue in honeylocust and black walnut silvopastures. Agrofor. Syst. 2019, 93, 113–121. [Google Scholar] [CrossRef]
- Balehegn, M.; Eik, L.O.; Tesfay, Y. Silvopastoral system based on Ficus thonningii: An adaptation to climate change in northern Ethiopia. Afr. J. Range Forage Sci. 2015, 32, 183–191. [Google Scholar] [CrossRef]
- Varsha, K.M.; Raj, A.K.; Kurien, E.K.; Bastin, B.; Kunhamu, T.K.; Pradeep, K.P. High density silvopasture systems for quality forage production and carbon sequestration in humid tropics of Southern India. Agrofor. Syst. 2019, 93, 185–198. [Google Scholar] [CrossRef]
- Jambwa, P.; Nyahangare, E.T. Ethnoveterinary Medicine: A Zimbabwean Perspective. In Ethnoveterinary Medicine: Present and Future Concepts; Springer: Cham, Switzerland, 2020; pp. 269–283. [Google Scholar] [CrossRef]
- Torri, M.C.; Herrmann, T.M.; Torri, M.C.; Herrmann, T.M. Traditional Ethnobiological Knowledge and Bioprospecting. In Bridges Between Tradition and Innovation in Ethnomedicine: Fostering Local Development Through Community-Based Enterprises in India; Springer: Dordrecht, The Netherlands, 2011; pp. 43–84. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Hofman-Bergholm, M. A transition towards a food and agricultural system that includes both food security and planetary health. Foods 2022, 12, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cole, J.; Adetona, M.A.; Basiru, A.; Jimoh, W.A.; Abdulsalami, S.; Ade-Yusuf, R.O.; Babalola, K.A.; Adetunji, V.O.; Ahmed, A.O.; Adeyemo, I.A.; et al. Climate Change, Land Use, and the Decline in Traditional Fulani Cattle Practices: Drivers of Antimicrobial Resistance in Kwara, Nigeria. Challenges 2024, 15, 41. https://doi.org/10.3390/challe15040041
Cole J, Adetona MA, Basiru A, Jimoh WA, Abdulsalami S, Ade-Yusuf RO, Babalola KA, Adetunji VO, Ahmed AO, Adeyemo IA, et al. Climate Change, Land Use, and the Decline in Traditional Fulani Cattle Practices: Drivers of Antimicrobial Resistance in Kwara, Nigeria. Challenges. 2024; 15(4):41. https://doi.org/10.3390/challe15040041
Chicago/Turabian StyleCole, Jennifer, Mutiat A. Adetona, Afisu Basiru, Wasiu A. Jimoh, Somrat Abdulsalami, Rodhiat O. Ade-Yusuf, Karimat A. Babalola, Victoria O. Adetunji, Akeem O. Ahmed, Ismail A. Adeyemo, and et al. 2024. "Climate Change, Land Use, and the Decline in Traditional Fulani Cattle Practices: Drivers of Antimicrobial Resistance in Kwara, Nigeria" Challenges 15, no. 4: 41. https://doi.org/10.3390/challe15040041
APA StyleCole, J., Adetona, M. A., Basiru, A., Jimoh, W. A., Abdulsalami, S., Ade-Yusuf, R. O., Babalola, K. A., Adetunji, V. O., Ahmed, A. O., Adeyemo, I. A., Olajide, A. M., Aremu, A., Odetokun, I. A., & Eltholth, M. (2024). Climate Change, Land Use, and the Decline in Traditional Fulani Cattle Practices: Drivers of Antimicrobial Resistance in Kwara, Nigeria. Challenges, 15(4), 41. https://doi.org/10.3390/challe15040041