The Detection and Characterization of Extrasolar Planets
Abstract
:1. Introduction
2. Exoplanet Detection
2.1. The Radial Velocity Method
2.2. The Transit Method
2.3. Gravitational Microlensing
2.4. Direct Imaging
3. Basic Properties of Exoplanet Systems
4. Planet Formation and Evolution
4.1. Disc-Planet Interactions
4.2. Dynamical Interactions
4.3. Outer Planets
5. Exoplanet Characteristics
5.1. Composition
5.2. Atmospheres
5.2.1. Transit and Secondary Eclipse Spectra
5.2.2. Phase Variations
5.2.3. High Resolution Spectroscopy
6. Habitability
Exomoons and Binary Systems
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wolszczan, A.; Frail, D.A. A planetary system around the millisecond pulsar PSR1257+12. Nature 1992, 355, 145–147. [Google Scholar] [CrossRef]
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Marcy, G.W.; Butler, R.P.; Vogt, S.S.; Fischer, D.A.; Wright, J.T.; Johnson, J.A.; Tinney, C.G.; Jones, H.R.A.; Carter, B.D.; Bailey, J.; et al. Exoplanet properties from Lick, Keck and AAT. Phys. Scr. 2008, 130, 014001. [Google Scholar] [CrossRef]
- Marois, C.; Macintosh, B.; Barman, T.; Zuckerman, B.; Song, I.; Patience, J.; Lafreniere, D.; Doyon, R. Direct imaging of multiple planets orbiting the star HR8799. Science 2008, 322, 1348–1352. [Google Scholar] [CrossRef] [PubMed]
- Biller, B.A.; Close, L.M.; Masciadri, E.; Nielsen, E.; Lenzen, R.; Brandner, W.; McCarthy, D.; Hartung, M.; Kellner, S.; Mamajek, E.; et al. An imaging survey for Extrasolar planets around 45 close, young stars with the simultaneous differential imager at the Very Large Telescope and MMT. Astrophys. J. Suppl. 2007, 173, 143–165. [Google Scholar]
- Seager, S. Exoplanet transit spectroscopy and photometry. Space Sci. Rev. 2008, 135, 345–354. [Google Scholar] [CrossRef]
- Pepe, F.; Mayor, M.; Delabre, B.; Kohler, D.; Lacroix, D.; Queloz, D.; Udry, S.; Benz, W.; Bertaux, J.-L.; Sivan, J.-P. HARPS : A new high-resolution spectrograph for the search of extrasolar planets. Proc. SPIE 2000, 4008, 582–592. [Google Scholar]
- Cosentino, R.; Lovis, C.; Pepe, F.; Cameron, A.C.; Latham, D.W.; Molinari, E.; Udry, S.; Bezawada, N.; Black, M.; Born, A.; et al. HARPS-N : The new planet hunter at TNG. Proc. SPIE 2012, 8446, 84461V. [Google Scholar] [CrossRef]
- Lo Curto, G.; Mayor, M.; Benz, W.; Bouchy, F.; Hbrard, G.; Lovis, C.; Moutou, C.; Naef, D.; Pepe, F.; Queloz, D.; et al. The HARPS search for southern extra-solar planets . XXXII. New multi-planet systems in the HARPS volume limited sample: A super-Earth and a Neptune in the habitable zone. Astron. Astrophys. 2013, 551, A59. [Google Scholar] [CrossRef]
- O’Donovan, F.T.; Charbonneau, D.; Torres, G.; Mandushev, G.; Dunham, E.W.; Latham, D.W.; Alonso, R.; Brown, T.M.; Esquerdo, G.A.; Everett, M.E.; et al. Rejecting astrophysical false positives from the TrES transiting planet survey: The example of GSC 03885-00829. Astrophys. J. 2006, 644, 1237–1245. [Google Scholar]
- Charbonneau, D.; Brown, T.M.; Latham, D.W.; Mayor, M. Detection of planetary transits across a sun-like star. Astrophys. J. 2000, 529, L45–L48. [Google Scholar] [CrossRef] [PubMed]
- Henry, G.W.; Marcy, G.W.; Butler, R.P.; Vogt, S.S. A transiting “51 Peg-like” planet. Astrophys. J. 2000, 529, L41–L44. [Google Scholar] [CrossRef] [PubMed]
- Pollacco, D.L.; Skillen, I.; Andrew Collier, C.; Christian, D.J.; Hellier, C.; Irwin, J.; Lister, T.A.; Street, R.A.; West, R.G.; Anderson, D.; et al. The WASP project and SuperWASP camera. Astrophys. Space Sci. 2006, 304, 253–255. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.J.; Basri, G.; Brown, T.; Caldwell, D.A.; Devore, E.; Dunham, E.W. The Kepler mission : A transit-photometry mission to discover terrestrial planets. In Planetary Systems and Planets in Systems; Udry, S., Benzm, W., von Steiger, R., Eds.; ESA Communications: Bern, Switzerland, 2006; pp. 207–220. [Google Scholar]
- Batalha, N.M.; Rowe, J.F.; Gilliland, R.L.; Jenkins, J.J.; Caldwell, D.A.; Borucki, W.J.; Koch, D.G.; Lissauer, J.J.; Dunham, E.W.; Gautier, T.N.; et al. Pre-spectroscopic false-positive elimination of Kepler planet candidates. Astrophys. J. 2010, 731, L103–L108. [Google Scholar] [CrossRef]
- Borucki, W.J.; Agol, E.; Fressin, F.; Kaltenegger, L.; Rowe, J.; Isaacson, H.; Fischer, D.; Batalha1, N.; Lissauer, J.J.; Marcy, G.W.; et al. Kepler-62: A five-planet system with planets of 1.4 and 1.6 Earth radii in the Habitable Zone. Science 2013, 340, 587–590. [Google Scholar]
- Holman, M.J.; Murray, N.W. The use of transit timing to detect terrestrial-mass extrasolar planets. Science 2005, 307, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.F.; Bryson, S.T.; Marcy, G.W.; Lissauer, J.J.; Jontof-Hutter, D.; Mullally, F.; Gilliland, R.L.; Issacson, H.; Ford, E.; Howell, S.B.; et al. Validation of Kepler’s Multiple Planet Candidates. III Light curve analysis and announcement of hundreds of new multi-planet systems. The Astrophys. J. 2014, 784, 45. [Google Scholar] [CrossRef]
- Pello, R.; Le Borgne, J.F.; Sanahuja, B.; Mathez, G.; Fort, B. The system of arcs in the cluster of galaxies Abell 2218—Photometry, spectroscopy and geometry. Astron. Astrophys. 1992, 266, 6–14. [Google Scholar]
- Beaulieu, J.-P.; Bennett, D.P.; Fouque, P.; Williams, A.; Dominik, M.; Jorgensen, U.G.; Kubas, D.; Cassan, A.; Coutures, C.; Greenhill, J.; et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 2006, 439, 437–440. [Google Scholar]
- Gaudi, S. Microlensing survey for exoplanets. Annu. Rev. Astron. Astrophys. 2012, 50, 411–453. [Google Scholar] [CrossRef]
- Tsapras, Y.; Street, R.; Horne, K.; Snodgrass, C.; Dominik, M.; Allan, A.; Steele, I.; Bramich, D.M.; Saunders, E.S.; Rattenbury, N.; et al. RoboNet-II: Follow-up observations of microlensing events with a robotic network of telescopes. Astron. Nachr. 2009, 330, 4–11. [Google Scholar]
- Giannini, E.; Lunine, J.I. Microlensing detection of extrasolar planets. Rep. Prog. Phys. 2013, 76, 056901. [Google Scholar] [CrossRef] [PubMed]
- Marois, C.; Zuckerman, B.; Konopacky, Q.M.; Macintosh, B.; Barman, T. Images of a fourth planet orbiting HR 8799. Nature 2010, 468, 1080–1083. [Google Scholar] [CrossRef] [PubMed]
- Lagrange, A.-M.; Bonnefoy, M.; Chauvin, G.; Apai, D.; Ehrenreich, D.; Boccaletti, A.; Gratadour, D.; Rouan, D.; Mouillet, D.; Lacour, S.; et al. A giant planet imaged in the disk of the young star β Pictoris. Science 2010, 329, 57–59. [Google Scholar]
- Snellen, I.A.G.; Brandl, B.R.; de Kok, R.J.; Brogi, M.; Birkby, J.; Schwarz, H. Fast spin of the young extrasolar planet β Pictoris b. Nature 2014, 509, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Dodson-Robinson, S.E.; Veras, D.; Ford, E.B.; Beichman, C.A. The formation mechanism of gas giants on wide orbits. Astrophys. J. 2009, 707, 79–88. [Google Scholar] [CrossRef]
- Biller, B.; Liu, M.C.; Wahhaj, Z.; Nielsen, E.L.; Hayward, T.L.; Males, J.R.; Skemer, A.; Close, L.M.; Chun, M.; Ftaclas, C.; et al. The Gemini/NICI planet-finding campaign: The frequency of planets around young moving group stars. Astrophys. J. 2013, 778, L10. [Google Scholar] [CrossRef]
- Kratter, K.M.; Murray-Clay, R.A.; Youdin, A.M. Runts of the litter: Why planets formed through gravitational collapse can only be failed binary stars. Astrophys. J. 2010, 710, 1375–1386. [Google Scholar] [CrossRef]
- Goldreich, P.; Soter, S. Q in the Solar system. Icarus 1966, 5, 375–389. [Google Scholar] [CrossRef]
- Terebey, S.; Shu, F.H.; Cassen, P. The collapse of the cores of slowly rotating isothermal clouds. Astrophys. J. 1984, 286, 529–551. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progr. Theor. Phys. Suppl. 1981, 70, 35–53. [Google Scholar] [CrossRef]
- Haisch, K.E.; Lada, E.A.; Lada, C.J. Disk frequencies and lifetimes in young clusters. Astrophys. J. 2001, 553, L153–L156. [Google Scholar] [CrossRef]
- Pollack, J.B.; Hubickyj, O.; Bodenheimer, P.; Lissauer, J.J.; Podolak, M.; Greenzweig, Y. Formation of giant planets by concurrent accretion of solids and gas. Icarus 1996, 124, 62–85. [Google Scholar] [CrossRef]
- Ida, S.; Lin, D.N.C. Towards a deterministic model of planet formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. Astrophys. J. 2004, 604, 388–413. [Google Scholar]
- Lin, D.N.C.; Papaloizou, J.C.B. Tidal torques on accretion discs in binary systems with extreme mass ratios. Mon. Not. R. Astron. Soc. 1979, 186, 799–812. [Google Scholar] [CrossRef]
- Goldreich, P.; Tremaine, S. Disk-satellite interactions. Astrophys. J. 1980, 241, 425–441. [Google Scholar] [CrossRef]
- Tanaka, H.; Takeuchi, T.; Ward, W.R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 2002, 565, 1257–1274. [Google Scholar] [CrossRef]
- Paardekooper, S.-J.; Mellema, G. Growing and moving low-mass planets in non-isothermal disks. Astron. Astrophys. 2008, 478, 245–266. [Google Scholar] [CrossRef]
- Nelson, R.P.; Papaloizou, J.C.B. The interaction of giant planets with a disc with MHD turbulence—IV. Migration rates of embedded protoplanets. Mon. Not. R. Astron. Soc. 2004, 350, 849–864. [Google Scholar] [CrossRef]
- Paardekooper, S.-J.; Papaloizou, J.C.B. On corotation torques, horseshoe drag and the possibility of sustained, stalled or outward protoplanetary migration. Mon. Not. R. Astron. Soc. 2009, 394, 2283–2296. [Google Scholar] [CrossRef]
- Rice, K.; Penny, M.T.; Horne, K. How fast do Jupiters grow? Signatures of the snowline and growth rate in the distribution of gas giant planets. Mon. Not. R. Astron. Soc. 2013, 428, 756–762. [Google Scholar]
- Masset, F.S.; Papaloizou, J.C.B. Runaway migration and the formation of hot Jupiters. Astrophys. J. 2003, 588, 494–508. [Google Scholar] [CrossRef]
- Cresswell, P.; Dirksen, G.; Kley, W.; Nelson, R.P. On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks. Astron. Astrophys. 2007, 473, 329–342. [Google Scholar] [CrossRef]
- Rasio, F.A.; Ford, E.B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 1996, 274, 954–956. [Google Scholar] [CrossRef]
- Papaloizou, J.C.B.; Terquem, C. Dynamical relaxation and massive extrasolar planets. Mon. Not. R. Astron. Soc. 2001, 325, 221–230. [Google Scholar] [CrossRef]
- Rice, W.K.M.; Armitage, P.J.; Bonnell, I.A.; Bate, M.R.; Jeffers, S.V.; Vine, S.G. Substellar companions and isolated planetary-mass objects from protostellar disc fragmentation. Mon. Not. R. Astron. Soc. 2003, 346, L36–L40. [Google Scholar] [CrossRef]
- Hébrard, G.; Bouchy, F.; Pont, F.; Loeillet, B.; Rabus, M.; Bonfils, X.; Moutou, C.; Boisse, I.; Delfosse, X.; Desort, M.; et al. Misaligned spin-orbit in the XO-3 planetary system? Astron. Astrophys. 2008, 488, 763–770. [Google Scholar]
- Triaud, A.H.M.J.; Cameron, A.C.; Queloz, D.; Anderson, D.R.; Gillon, M.; Hebb, L.; Hellier, C.; Loeillet, B.; Maxted, P.F.; Mayor, M.; et al. Spin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters. Astron. Astrophys. 2010, 524, A25. [Google Scholar] [CrossRef] [Green Version]
- Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 1962, 67, 591–598. [Google Scholar] [CrossRef]
- Lidov, M.L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 1962, 9, 719–759. [Google Scholar] [CrossRef]
- Fabrycky, D.; Tremaine, S. Shrinking binary planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 2007, 669, 1298–1315. [Google Scholar] [CrossRef]
- Toomre, A. On the gravitational instability of a disk of stars. Astrophys. J. 1964, 139, 1217–1238. [Google Scholar] [CrossRef]
- Boss, A.P. Formation of planetary-mass objects by protostellar collapse and fragmentation. Astrophys. J. 2001, 551, L167–L170. [Google Scholar] [CrossRef]
- Rafikov, R.R. Can giant planets form by direct gravitational instability? Astrophys. J. 2005, 621, L69–L72. [Google Scholar] [CrossRef]
- Clarke, C.J. Pseudo-viscous modelling of self-gravitating discs and the formation of low mass ratio binaries. Mon. Not. R. Astron. Soc. 2009, 396, 1066–1074. [Google Scholar] [CrossRef]
- Rice, W.K.M.; Armitage, P.J. Time-dependent models of the structure and stability of self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 2009, 396, 2228–2236. [Google Scholar] [CrossRef]
- Stamatellos, D.; Whitworth, A.P. The properties of brown dwarfs and low-mass hydrogen burning stars formed by disc fragmentation. Mon. Not. R. Astron. Soc. 2009, 392, 413–427. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Rice, W.K.M.; Muxlow, T.B. Enhanced dust emission in the HL Tau disc: A low-mass companion in formation? Mon. Not. R. Astron. Soc. 2008, 391, L74–L78. [Google Scholar] [CrossRef]
- Nayakshin, S. Formation of planets by tidal downsizing of giant planet embryos. Mon. Not. R. Astron. Soc. 2010, 408, L36–L40. [Google Scholar] [CrossRef]
- Forgan, D.; Rice, K. Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing. Mon. Not. R. Astron. Soc. 2013, 432, 3168–3185. [Google Scholar] [CrossRef]
- Howard, A.W.; Sanchis-Ojeda, R.; Marcy, G.W.; Johnson, J.A.; Winn, J.N.; Isaacson, H.; Fischer, D.A.; Fulton, B.J.; Sinukoff, E.; Fortney, J.J. A rocky composition for an Earth-sized exoplanet. Nature 2013, 503, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Fortney, J.J.; Nettelmann, N. The interior structure, composition and evolution of giant planets. Space Sci. Rev. 2010, 152, 423–447. [Google Scholar] [CrossRef]
- Fortney, J.J.; Demory, B.-O.; Dsert, J.-M.; Rowe, J.; Marcy, G.W.; Isaacson, H.; Buchhave, L.A.; Ciardi, D.; Gautier, T.N.; Batalha, N.M.; et al. Discovery and atmospheric characterization of giant planet Kepler-12b: An inflated radius outlier. Astrophys. J. 2011, 197, 9. [Google Scholar] [CrossRef]
- Guillot, T.; Burrows, A.; Hubbard, W.B.; Lunine, J.I.; Saumon, D. Giant planets at small orbital distances. Astrophys. J. 1996, 459, L35–L38. [Google Scholar] [CrossRef]
- Ibgul, L.; Burrows, A.; Spiegel, D.S. Tidal heating models for the radii of the inflated transiting giant planets WASP-4b, WASP-6b, WASP-12b, WASP-15b, and TrES-4. Astrophys. J. 2010, 713, 751–763. [Google Scholar] [CrossRef]
- Dumusque, X.; Bonomo, A.S.; Haywood, R.D.; Malavolta, L.; Segransan, D.; Buchhave, L.A.; Cameron, A.C.; Latham, D.W.; Molinari, E.; Pepe, F.; et al. The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet. Astrophys. J. 2014, 789. [Google Scholar] [CrossRef]
- Adams, E.R.; Seager, S.; Elkins-Tanton, L. Ocean planet or thick atmosphere: On the mass-radius relationship for solid exoplanets with massive atmospheres. Astrophys. J. 2008, 673, 1160–1164. [Google Scholar]
- Pepe, F.; Cameron, A.C.; Latham, D.W.; Molinari, E.; Udry, S.; Bonomo, A.S.; Buchhave, L.A.; Charbonneau, D.; Cosentino, R.; Dressing, C.D.; et al. An Earth-sized planet with an Earth-like density. Nature 2013, 503, 377–380. [Google Scholar] [Green Version]
- Crossfield, I.J.M.; Biller, B.; Schlieder, J.E.; Deacon, N.R.; Bonnefoy, M.; Homeier, D.; Allard, F.; Buenzli, E.; Henning, T.; Brandner, W.; et al. A global cloud map of the nearest brown dwarf. Nature 2014, 505, 654–654. [Google Scholar]
- Barman, T.S.; Macintosh, B.; Konopacky, Q.M.; Marois, C. Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. Astrophys. J. 2011, 733, 733. [Google Scholar] [CrossRef]
- Konopacky, Q.M.; Barman, T.S.; Macintosh, B.; Marois, C. Detection of Carbon Monoxide and water absorption lines in an exoplanet atmosphere. Science 2013, 339, 1398–1401. [Google Scholar] [CrossRef] [PubMed]
- Mesa, D.; Gratton, R.; Berton, A.; Antichi, J.; Verinaud, C.; Boccaletti, A.; Kasper, M.; Claudi, R.; Desidera, S.; Giro, E.; et al. Simulation of planet detection with the SPHERE integral field spectrograph. Astron. Astrophys. 2011, 529, A131. [Google Scholar] [CrossRef]
- Macintosh, B.; Graham, J.R.; Perrin, M.; Macintosh, B. First light of the Gemini Planet Imager. Proc. Natl. Acad. Sci. USA 2014, 111, 12661–12666. [Google Scholar] [CrossRef] [PubMed]
- Snellen, I.A.G.; Albrecht, S.; de Mooij, E.J.W.; Le Poole, R.S. Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b. Astron. Astrophys. 2008, 487, 357–362. [Google Scholar] [CrossRef]
- Deming, D.; Brown, T.M.; Charbonneau, D.; Harrington, J.; Jeremy Richardson, L. A new search for carbon monoxide absorption in the transmission spectrum of the extrasolar planet HD209458b. Astrophys. J. 2005, 622, 1149–1159. [Google Scholar] [CrossRef]
- Stevenson, K.B.; Bean, J.L.; Seifahrt, A.; Desert, J.-M.; Madhusudhan, N.; Bergmann, M.; Kreidberg, L.; Homeier, D. Transmission spectroscopy of the hot Jupiter WASP-12b from 0.7 to 5 μm. Astron. J. 2014, 147, 161. [Google Scholar] [CrossRef]
- Redfield, S.; Endl, M.; Cochran, W.D.; Koesterke, L. Sodium absorption from the exoplanetary atmosphere of HD189733b detected in the optical transmission spectrum. Astrophys. J. 2008, 673, L87–L90. [Google Scholar]
- Birkby, J.L.; de Kok, R.J.; Brogi, M.; de Mooij, E.J.W.; Schwarz, H.; Albrecht, S.; Snellen, I.A.G. Detection of water absorption in the day side atmosphere of HD189733b using ground-based high-resolution spectroscopy at 3.2 μm. Mon. Not. R. Astron. Soc. 2013, 436, L36–L39. [Google Scholar] [CrossRef]
- Evans, T.M.; Pont, F.; Sing, D.K.; Aigrain, S.; Barstow, J.K.; Dsert, J.-M.; Gibson, N.; Heng, K.; Knutson, H.A.; des Etangs, A.L. The deep blue color of HD189733b: Albedo measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at visible wavelengths. Astrophys. J. 2013, 772, L16. [Google Scholar] [CrossRef]
- Désert, J.-M.; Bean, J.; Miller-Ricci Kempton, E.; Berta, Z.K.; Charbonneau, D.; Irwin, J.; Fortney, J.J.; Burke, C.J.; Nutzman, P. Observational evidence for a metal-rich atmosphere on the super-Earth GJ1214b. The Astrophys. J. 2011, 731, L40. [Google Scholar] [CrossRef]
- Kreidberg, L.; Bean, J.L.; Dsert, J.-M.; Benneke, B.; Deming, D.; Stevenson, K.B.; Seager, S.; Berta-Thompson, Z.; Seifahrt, A.; Homeier, D. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 2014, 7481, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, A.N.; Deming, D.; Madhusudhan, N.; Burrows, A.; Knutson, H.; McCullough, P.; Ranjan, S. The emergent 1.1–1.7 μm spectrum of the exoplanet CoRoT-2b as measured using the Hubble Space Telescope. Astrophys. J. 2014, 783, 113. [Google Scholar] [CrossRef]
- Dreming, D.; Joseph, H.; Sara, S.; Jeremy, R.L. Strong infrared emission from the extrasolar planet HD 189733b. Astrophys. J. 2006, 644, 560–564. [Google Scholar] [CrossRef]
- Knutson, H.A.; Charbonneau, D.; Allen, L.E.; Fortney, J.J.; Agol, E.; Cowan, N.B.; Showman, A.P.; Cooper, C.S.; Thomas Megeath, S. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 2007, 447, 183–186. [Google Scholar] [CrossRef] [PubMed]
- De Wit, J.; Gillon, M.; Demory, B.-O.; Seager, S. Towards consistent mapping of distant worlds : Secondary-eclipse scanning of the exoplanet HD 189733b. Astron. Astrophys. 2012, 548, A128. [Google Scholar] [CrossRef]
- Demory, B.-O.; de Wit, J.; Lewis, N.; Fortney, J.; Zsom, A.; Seager, S.; Knutson, H.; Heng, K.; Madhusudhan, N.; Gillon, M.; et al. Inference of inhomogeneous clouds in an exoplanet atmosphere. Astrophys. J. 2013, 776, L25. [Google Scholar] [CrossRef]
- Snellen, I.A.G.; de Kok, R.J.; le Poole, R.; Brogi, M.; Birkby, J. Finding extraterrestrial life using ground-based high-dispersion spectroscopy. Astrophys. J. 2013, 764, 182. [Google Scholar] [CrossRef]
- Brogi, M.; de Kok, R.J.; Birkby, J.L.; Schwarz, H.; Snellen, I.A.G. Carbon monoxide and water vapour in the atmosphere of the non-transiting exoplanet HD 179949 b. Astron. Astrophys. 2014, 565, A124. [Google Scholar] [CrossRef]
- Kasting, J.F.; Whitmire, D.P.; Reynolds, R.T. Habitable zones are main sequence stars. Icarus 1993, 101, 108–128. [Google Scholar] [CrossRef]
- Abe, Y.; Abe-Ouchi, A.; Sleep, N.H.; Zahnle, K.J. Habitable zone limits for dry planets. Astrobiology 2011, 11, 443–460. [Google Scholar] [CrossRef] [PubMed]
- Leconte, J.; Forget, F.; Charnay, B.; Wordsworth, R.; Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 2013, 504, 268–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierrehumbert, R.; Gaidos, E. Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. Lett. 2011, 734, L13. [Google Scholar] [CrossRef]
- Stevenson, D.J. Life-sustaining planets in interstellar space? Nature 2009, 400, 32. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Mndez, A.; Fairn, A.G.; von Paris, P.; Turse, C.; Boyer, G.; Davila, A.F.; Antnio, M.R.; Catling, D.; Irwin, LN. A two-tiered approach to assess the habitability of exoplanets. Astrobiology 2011, 11, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Selsis, F.; Kasting, J.F.; Levrard, B.; Paillet, J.; Ribas, I.; Delfosse, X. Habitable planets around the star Gliese 581. Astron. Astrophys. 2007, 476, 1373–1387. [Google Scholar] [CrossRef] [Green Version]
- Kasting, J.F.; Kopparapu, R.; Ramirez, R.M.; Harman, C.E. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proc. Natl. Acad. Sci. USA 2014, 111, 12641–12646. [Google Scholar] [CrossRef] [PubMed]
- Kopparapu, R.K. A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. Astrophys. J. Lett. 2013, 767, L8. [Google Scholar] [CrossRef]
- Wolstencroft, R.D.; Raven, J.A. Photosynthesis: Likelihood of occurence and possibility of detection on Earth-like planets. Icarus 2002, 157, 535–548. [Google Scholar] [CrossRef]
- Joshi, M.M.; Haberle, R.M.; Reynolds, R.T. Simulations of the atmospheres od synchronously rotating terrestrial planets orbiting M dwarfs: Conditions for atmospheric collapse and the implications for habitability. Icarus 1997, 129, 450–465. [Google Scholar] [CrossRef]
- Kite, E.S.; Gaidos, E.; Manga, M. Climate instability on tidally locked exoplanets. Astrophys. J. 2011, 743, 41. [Google Scholar] [CrossRef]
- Doyle, L.R.; Carter, J.R.; Fabrycky, D.C.; Slawson1, R.W.; Howell, S. B.; Winn, J.N.; Orosz, J.A.; Prsa, A.; Welsh, W.F.; Quinn, S.N.; et al. Kepler-16: A transiting circumbinary planet. Science 2011, 333, 1602–1606. [Google Scholar]
- Forgan, D.H.; Kipping, D. Dynamical effects on the habitable zone for Earth-like exomoons. Mon. Not. R. Astron. Soc. 2013, 432, 2994–3004. [Google Scholar] [CrossRef]
- Kaltenegger, L. Characterizing habitable exomoons. Astrophys. J. 2010, 712, L125–L130. [Google Scholar] [CrossRef]
- Kipping, D.M.; Fossey, S.J.; Campanella, G. On the detectability of habitable exomoons with Kepler-class photometry. Mon. Not. R. Astron. Soc. 2009, 400, 398–405. [Google Scholar] [CrossRef]
- Kipping, D.M.; Forgan, D.; Hartman, J.; Nesvorny, D.; Bakos, G.A.; Schmitt, A.R.; Buchhave, L.A. The hunt for exomoons with Kepler (HEK). III. The first search for an exomoon around a habitable-zone planet. Astrophys. J. 2013, 777, 134. [Google Scholar] [CrossRef]
- Reynolds, R.T.; McKay, C.P.; Kasting, J.F. Europa, tidally heated oceans, and habitable zones around giant planets. Adv. Space Res. 1987, 7, 125–132. [Google Scholar] [CrossRef]
- Grasset, P.; Dougherty, M.K.; Coustenis, A.; Bunced, E.J.; Erde, C.; Titove, D.; Blancf, M.; Coatesg, A.; Drossart, P.; Fletcherh, L.N.; et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterize the Jupiter system. Planet. Space Sci. 2013, 78, 1–21. [Google Scholar]
- Rein, H.; Fujii, Y.; Spiegel, D.S. Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets. Proc. Natl. Acad. Sci. USA 2014, 111, 6871–6875. [Google Scholar] [CrossRef] [PubMed]
- Beer, M.E.; King, A.R.; Livio, M.; Pringle, J.E. How special is the Solar System? Mon. Not. R. Astron. Soc. 2004, 354, 763–768. [Google Scholar] [CrossRef]
© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rice, K. The Detection and Characterization of Extrasolar Planets. Challenges 2014, 5, 296-323. https://doi.org/10.3390/challe5020296
Rice K. The Detection and Characterization of Extrasolar Planets. Challenges. 2014; 5(2):296-323. https://doi.org/10.3390/challe5020296
Chicago/Turabian StyleRice, Ken. 2014. "The Detection and Characterization of Extrasolar Planets" Challenges 5, no. 2: 296-323. https://doi.org/10.3390/challe5020296
APA StyleRice, K. (2014). The Detection and Characterization of Extrasolar Planets. Challenges, 5(2), 296-323. https://doi.org/10.3390/challe5020296