Towards Integrating Mobile Devices into Dew Computing: A Model for Hour-Wise Prediction of Energy Availability
Abstract
:1. Introduction
2. Related Works
3. Approach
3.1. Preliminary Data Analysis and Feature Selection
- Day of week: with values from 0 (Sunday) to 6 (Saturday) indicates the week day where the event was registered. Type: integer.
- Minute: with values from 1 to 1440 that represent the minute of the day in which the event occurred. Type: integer.
- External supply: Takes a 1/0 value and indicates whether the device is plugged to an external energy supply, e.g., AC adapter or USB connection, or not respectively. Type: Boolean.
- Brightness level: with values from 0 to 100 indicates the screen brightness percentage intensity. Type: integer.
- Screen on/off: takes a 1/0 value and indicates whether the device screen is active or inactive respectively. Type: Boolean.
- Connected: takes a 1/0 value indicating whether the device is connected to a 3G/4G network or not respectively. Type: Boolean.
- Connected to Wifi: takes a 1/0 value indicating whether the device is connected to a Wifi network or not respectively. Type: Boolean.
- Temperature: indicates battery temperature. Type: Integer.
- Voltage: indicates battery voltage. Type: integer.
- Battery level: with values from 0 to 100, indicates remaining battery level. Type: integer.
3.1.1. Correlation Analysis
3.1.2. Feature Selection
3.2. Model Construction
Algorithm 1 Pseudo-code of the remaining battery prediction method |
|
4. Evaluation
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
User/Day | Sunday at 5 p.m. | Monday at 5 p.m. | Tuesday at 5 p.m. | Wednesday at 5 p.m. | Thursday at 5 p.m. | Friday at 5 p.m. | Saturday at 5 p.m. |
---|---|---|---|---|---|---|---|
User #1 | 47 | 44 | 50 | 48 | 51 | 49 | 45 |
User #2 | 21 | 25 | 21 | 24 | 24 | 25 | 23 |
User #3 | 57 | 61 | 63 | 65 | 55 | 81 | 62 |
User #4 | 33 | 43 | 43 | 50 | 47 | 46 | 44 |
User #5 | 44 | 39 | 35 | 46 | 42 | 44 | 48 |
User #6 | 49 | 50 | 49 | 57 | 54 | 47 | 34 |
User #7 | 61 | 75 | 73 | 62 | 70 | 64 | 63 |
User #8 | 44 | 45 | 46 | 51 | 47 | 41 | 38 |
User #9 | 40 | 36 | 42 | 42 | 36 | 36 | 34 |
User #10 | 48 | 44 | 53 | 46 | 40 | 54 | 61 |
User #11 | 33 | 41 | 49 | 35 | 37 | 45 | 46 |
User #12 | 60 | 61 | 63 | 61 | 59 | 60 | 69 |
User #13 | 51 | 62 | 57 | 56 | 65 | 56 | 44 |
User #14 | 43 | 42 | 42 | 44 | 47 | 46 | 55 |
User #15 | 55 | 53 | 55 | 54 | 59 | 66 | 41 |
User #16 | 73 | 73 | 64 | 65 | 74 | 67 | 58 |
User #17 | 54 | 57 | 51 | 57 | 46 | 61 | 55 |
User #18 | 17 | 21 | 22 | 20 | 20 | 20 | 25 |
User #19 | 92 | 102 | 92 | 90 | 97 | 79 | 89 |
User #20 | 32 | 33 | 35 | 38 | 37 | 40 | 42 |
User #21 | 51 | 53 | 50 | 48 | 45 | 48 | 48 |
User #22 | 46 | 42 | 51 | 41 | 45 | 48 | 45 |
User #23 | 52 | 52 | 50 | 49 | 49 | 60 | 56 |
References
- Skala, K.; Davidovic, D.; Afgan, E.; Sovic, I.; Sojat, Z. Scalable distributed computing hierarchy: Cloud, fog and dew computing. Open J. Cloud Comput. 2015, 2, 16–24. [Google Scholar]
- Nunna, S.; Kousaridas, A.; Ibrahim, M.; Dillinger, M.; Thuemmler, C.; Feussner, H.; Schneider, A. Enabling real-time context-aware collaboration through 5G and mobile edge computing. In Proceedings of the 12th International Conference on Information Technology-New Generations, Las Vegas, NV, USA, 13–15 April 2015; pp. 601–605. [Google Scholar]
- Vaquero, L.M.; Rodero-Merino, L. Finding Your Way in the Fog: Towards a Comprehensive Definition of Fog Computing. SIGCOMM Comput. Commun. Rev. 2014, 44, 27–32. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First Edition of the Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16. [Google Scholar]
- Ahmed, E.; Ahmed, A.; Yaqoob, I.; Shuja, J.; Gani, A.; Imran, M.; Shoaib, M. Bringing computation closer toward the user network: Is edge computing the solution? IEEE Commun. Mag. 2017, 55, 138–144. [Google Scholar] [CrossRef]
- Ray, P.P. Minimizing dependency on internetwork: Is dew computing a solution? Trans. Emerg. Telecommun. Technol. 2019, 30, e3496. [Google Scholar] [CrossRef]
- Ray, P.P. An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access 2018, 6, 723–737. [Google Scholar] [CrossRef]
- Wang, Y. Cloud-dew architecture. Int. J. Cloud Comput. 2015, 4, 199–210. [Google Scholar] [CrossRef]
- Fisher, D.E.; Yang, S. Doing more with the dew: A new approach to cloud-dew architecture. Open J. Cloud Comput. 2016, 3, 8–19. [Google Scholar]
- Gusev, M. A dew computing solution for IoT streaming devices. In Proceedings of the 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 387–392. [Google Scholar]
- Martins, V.; Rufino, J.; Silva, L.; Almeida, J.; Miguel Fernandes Silva, B.; Ferreira, J.; Fonseca, J. Towards Personal Virtual Traffic Lights. Information 2019, 10, 32. [Google Scholar] [CrossRef]
- Rawassizadeh, R.; Pierson, T.J.; Peterson, R.; Kotz, D. NoCloud: Exploring network disconnection through on-device data analysis. IEEE Pervasive Comput. 2018, 17, 64–74. [Google Scholar] [CrossRef]
- Curiel, M.; Calle, D.F.; Santamaría, A.S.; Suarez, D.F.; Flórez, L. Parallel Processing of Images in Mobile Devices using BOINC. Open Eng. 2018, 8, 87–101. [Google Scholar] [CrossRef]
- Harwood, A.R.; Revell, A.J. Parallelisation of an interactive lattice-Boltzmann method on an Android-powered mobile device. Adv. Eng. Softw. 2017, 104, 38–50. [Google Scholar] [CrossRef]
- Hirsch, M.; Mateos, C.; Zunino, A. Augmenting computing capabilities at the edge by jointly exploiting mobile devices: A survey. Future Gener. Comput. Syst. 2018, 88, 644–662. [Google Scholar] [CrossRef]
- Tapparello, C.; Karaoglu, C.F.B.; Ba, H.; Hijazi, S.; Shi, J.; Aquino, A.; Heinzelman, W. Volunteer Computing on Mobile Devices: State of the Art and Future. In Enabling Real-Time Mobile Cloud Computing through Emerging Technologies; IGI Global: Hershey, PA, USA, 2015; pp. 153–181. [Google Scholar]
- Hirsch, M.; Rodríguez, J.M.; Mateos, C.; Zunino, A. A two-phase energy-aware scheduling approach for cpu-intensive jobs in mobile grids. J. Grid Comput. 2017, 15, 55–80. [Google Scholar] [CrossRef]
- Wagner, D.T.; Rice, A.; Beresford, A.R. Device Analyzer: Large-scale mobile data collection. ACM SIGMETRICS Perform. Eval. Rev. 2014, 41, 53–56. [Google Scholar] [CrossRef]
- Kang, J.M.; Seo, S.S.; Hong, J.W.K. Personalized battery lifetime prediction for mobile devices based on usage patterns. J. Comput. Sci. Eng. 2011, 5, 338–345. [Google Scholar] [CrossRef]
- Longo, M.; Mateos, C.; Zunino, A. A Model for Hour-Wise Prediction of Mobile Device Energy Availability. In Information Technology-New Generations; Springer: Berlin, Germany, 2018; pp. 351–358. [Google Scholar]
- Singh, K.V.; Raza, Z. A quantum-inspired binary gravitational search algorithm–based job-scheduling model for mobile computational grid. Concurr. Comput. Pract. Exp. 2017, 29, e4103. [Google Scholar] [CrossRef]
- Shah, S.C. Energy efficient and robust allocation of interdependent tasks on mobile ad hoc computational grid. Concurr. Comput. Pract. Exp. 2015, 27, 1226–1254. [Google Scholar] [CrossRef]
- Lee, J.; Choi, S.; Gil, J.; Suh, T.; Yu, H. A scheduling algorithm with dynamic properties in mobile grid. Front. Comput. Sci. 2014, 8, 847–857. [Google Scholar] [CrossRef]
- Kotz, D.; Henderson, T. Crawdad: A community resource for archiving wireless data at dartmouth. IEEE Pervasive Comput. 2005, 4, 12–14. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Mateos, C.; Zunino, A. Energy-efficient job stealing for CPU-intensive processing in mobile devices. Computing 2014, 96, 87–117. [Google Scholar] [CrossRef]
- Hirsch, M.; Rodriguez, J.M.; Zunino, A.; Mateos, C. Battery-aware centralized schedulers for CPU-bound jobs in mobile Grids. Pervasive Mob. Comput. 2016, 29, 73–94. [Google Scholar] [CrossRef]
- Furthmüller, J.; Waldhorst, O.P. Energy-aware resource sharing with mobile devices. Comput. Netw. 2012, 56, 1920–1934. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Guyon, I.; Elisseeff, A. An introduction to feature extraction. In Feature Extraction; Springer: Berlin, Germany, 2006; pp. 1–25. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014. [Google Scholar]
Day of Week | Minute | External Supply | Bright Level | Screen on/off | Connected | Connected to Wifi | Temperature | Voltage (mV) | Battery Level |
---|---|---|---|---|---|---|---|---|---|
3 | 652 | 0 | 149 | 1 | 0 | 1 | 275 | 3686 | 31 |
3 | 653 | 0 | 149 | 1 | 0 | 1 | 286 | 3740 | 30 |
3 | 654 | 0 | 149 | 1 | 0 | 1 | 286 | 3740 | 30 |
3 | 655 | 0 | 149 | 1 | 0 | 1 | 286 | 3740 | 30 |
Device-Analyzer id | Paper User id | Device | Sampling Time Range | Preprocessed Samples |
---|---|---|---|---|
2ed95c7b731796c93e6b3d64838999c544cd9a3c | User #1 | LG E970 | 2013-07-07/2014-10-26 | 562,309 |
610556db933b1efc49102b24d25a38ea4046fa83 | User #2 | Asus Nexus 7 | 2013-03-04/2014-06-06 | 651,011 |
637085b6a0f994e3553c04e1fb1ba34adc79b45f | User #3 | LG Nexus 7 | 2013-06-25/2015-04-21 | 1,214,104 |
776b987e3603dc29d0e69ab02589495d16ef4ab0 | User #4 | Samsung GT-I9300 | 2013-04-17/2015-04-17 | 654,729 |
eb479ee4954f6cfdac96e7f96da8082e9ed14448 | User #5 | Samsung Galaxy Nexus | 2012-08-08/2013-09-03 | 570,516 |
20c3e02df67c67e03c25d9e652e6824223566e97 | User #6 | Sony C6603 | 2013-09-04/2014-12-17 | 655,531 |
30d303a9bd7fe9b25843221664ed0a06327513cc | User #7 | Asus Nexus 7 | 2013-04-09/2015-03-30 | 920,499 |
35b1d2e2fba71ffbd464e9332694449ebb4c6abc | User #8 | Sony C6802 | 2013-10-10/2015-04-22 | 626,555 |
3894eeb7d815d317b03832230d789ea5f0976431 | User #9 | Samsung GT-N7105 | 2013-05-22/2015-04-16 | 491,890 |
3f76e9998242f8d1deccf8768317de51f8016dfc | User #10 | Samsung GT-I9300 | 2012-10-04/2014-03-04 | 1,166,769 |
43a0307073bbffb25fc8a61b9208984643542fd5 | User #11 | Sony C6603 | 2013-09-13/2014-12-03 | 477,212 |
47489d0baa333944707e7e73eddf7217e3b6ad6f | User #12 | Samsung Nexus 10 | 2013-03-02/2015-04-21 | 1,084,742 |
4e35914592394bd77618bf5fbb082c5633e505b3 | User #13 | Samsung SGH-I337 | 2013-04-30/2015-04-20 | 1,763,679 |
97c303108eafe034b9abd3da8e99de69c75b007c | User #14 | Samsung Nexus 10 | 2013-09-15/2014-12-21 | 644,837 |
a70bf30cf27a42de6fea303ce5741175d1576db2 | User #15 | Samsung GT-I9300 | 2013-04-16/2014-06-15 | 1,187,940 |
ad6805eaa1c029bd984787cfae32ba08a31eb760 | User #16 | Samsung Galaxy Nexus | 2012-06-01/2014-01-11 | 837,551 |
aebdbfd3f63250921dc09ad26d4bf53560744f71 | User #17 | LG Nexus 5 | 2013-11-13/2015-04-22 | 767,949 |
b73b55214a94fa6820e66004953b3d78cf4e55cc | User #18 | Asus Nexus 7 | 2013-05-18/2015-03-18 | 238,914 |
d7c99d131faa1b6127d66298b6f2dc8b399799f5 | User #19 | Sony LT29i | 2013-02-15/2015-01-24 | 2,886,243 |
e0f8b15eac51a415ce7c8ef3b7bc44c7f742c81b | User #20 | Motorola XT1032 | 2014-03-19/2015-04-21 | 491,097 |
f61dac311bac0ecd8e0ce49f20d8982f07c1ccff | User #21 | Asus Nexus 7 | 2013-09-15/2015-02-06 | 694,249 |
f76e8746e60aeec21805ddde542219068dd03999 | User #22 | Samsung GT-I9300 | 2013-11-15/2015-04-22 | 607,084 |
ff3925bbbe0bb0b08af35f3b997f452d82ab71ed | User #23 | Sony C6603 | 2013-11-20/2015-04-02 | 628,723 |
F-Regression | Mutual Information | Lasso | |
---|---|---|---|
Previous Battery Level | 3.86 × 10 | 3.995 | 0.9966 |
Minute | 2.06 × 10 | 0.599 | 0.0088 |
Day of Week | 5.25 × 10 | 0.067 | 0.0002 |
External Supply | 1.28 × 10 | 0.193 | 0.467 |
Connected | 1.21 × 10 | 0.028 | 0 |
Connected to Wifi | 2.85 × 10 | 0.024 | 0 |
Bright Level | 2.87 × 10 | 0.002 | 0.0002 |
Screen On/Off | 3.22 × 10 | 0.059 | 0.007 |
Sinus | 2.61 × 10 | 0.308 | 0.086 |
Cosine | 6.39 × 10 | 0.244 | 0 |
Sunday at 5 p.m. | Monday at 5 p.m. | Tuesday at 5 p.m. | Wednesday at 5 p.m. | Thursday at 5 p.m. | Friday at 5 p.m. | Saturday at 5 p.m. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
User id | Kang et al. | Ours | Kang et al. | Ours | Kang et al. | Ours | Kang et al. | Ours | Kang et al. | Ours | Kang et al. | Ours | Kang et al. | Ours |
User #1 | 9.1 | 15.2 | 11.4 | 18.4 | 10.2 | 16.5 | 11.6 | 18.7 | 9.7 | 17.2 | 13.0 | 16.1 | 14.9 | 19.3 |
User #2 | 23.0 | 20.7 | 19.1 | 21.2 | 23.0 | 22.2 | 20.7 | 18.9 | 17.3 | 18.7 | 24.7 | 24.4 | 18.5 | 22.6 |
User #3 | 14.2 | 19.4 | 14.1 | 20.4 | 17.4 | 21.1 | 18.6 | 20.4 | 12.1 | 16.6 | 17.3 | 24.4 | 21.0 | 22.5 |
User #4 | 21.2 | 26.3 | 18.6 | 23.2 | 18.2 | 19.2 | 16.6 | 20.9 | 17.0 | 20.1 | 25.0 | 20.2 | 18.2 | 20.3 |
User #5 | 26.7 | 24.0 | 29.4 | 26.3 | 23.7 | 26.7 | 33.2 | 32.4 | 30.2 | 33.9 | 30.9 | 28.3 | 37.0 | 31.1 |
User #6 | 35.2 | 14.1 | 36.7 | 12.6 | 32.5 | 12.2 | 35.0 | 13.2 | 34.0 | 13.0 | 25.9 | 15.0 | 25.6 | 16.0 |
User #7 | 55.9 | 13.4 | 54.2 | 14.1 | 55.3 | 16.6 | 50.2 | 14.1 | 54.2 | 15.2 | 54.3 | 16.0 | 53.1 | 12.8 |
User #8 | 69.4 | 19.1 | 67.9 | 19.8 | 71.8 | 18.2 | 72.1 | 17.7 | 73.3 | 19.8 | 71.4 | 18.2 | 72.2 | 18.0 |
User #9 | 55.7 | 12.9 | 59.8 | 14.1 | 60.6 | 13.8 | 57.9 | 10.7 | 60.9 | 14.6 | 54.5 | 12.4 | 59.3 | 17.9 |
User #10 | 26.3 | 16.9 | 26.9 | 16.0 | 30.8 | 15.0 | 32.4 | 16.4 | 30.9 | 14.0 | 24.7 | 16.3 | 32.3 | 16.7 |
User #11 | 54.9 | 29.1 | 55.2 | 34.3 | 54.9 | 30.8 | 53.5 | 29.8 | 49.4 | 31.7 | 54.2 | 27.9 | 49.3 | 30.3 |
User #12 | 37.4 | 10.9 | 38.5 | 11.1 | 38.6 | 13.2 | 36.8 | 11.4 | 38.0 | 10.5 | 42.4 | 9.3 | 42.8 | 13.2 |
User #13 | 25.7 | 14.9 | 21.9 | 16.7 | 20.4 | 16.8 | 22.3 | 16.6 | 18.6 | 18.3 | 25.7 | 17.3 | 22.0 | 17.5 |
User #14 | 31.6 | 15.7 | 36.5 | 13.6 | 40.8 | 14.6 | 37.3 | 15.9 | 36.9 | 14.9 | 38.5 | 16.4 | 40.3 | 21.3 |
User #15 | 36.9 | 19.5 | 40.1 | 21.5 | 37.1 | 20.2 | 37.4 | 20.2 | 35.9 | 17.3 | 45.6 | 22.2 | 47.6 | 29.3 |
User #16 | 45.9 | 19.7 | 42.9 | 25.1 | 45.5 | 20.2 | 42.1 | 26.6 | 46.2 | 17.6 | 46.1 | 13.2 | 40.5 | 20.0 |
User #17 | 32.7 | 21.3 | 38.1 | 17.7 | 35.6 | 19.1 | 37.6 | 17.5 | 33.2 | 21.0 | 33.6 | 20.2 | 33.1 | 22.7 |
User #18 | 30.1 | 10.6 | 30.0 | 9.3 | 28.1 | 9.2 | 31.2 | 10.4 | 29.6 | 14.7 | 28.9 | 8.3 | 28.2 | 11.8 |
User #19 | 29.4 | 18.0 | 29.7 | 15.5 | 29.1 | 19.7 | 30.3 | 20.3 | 29.7 | 19.9 | 26.8 | 22.0 | 30.7 | 23.3 |
User #20 | 28.9 | 12.7 | 26.2 | 14.3 | 26.4 | 14.5 | 26.9 | 16.4 | 30.6 | 14.6 | 31.0 | 14.1 | 32.5 | 13.6 |
User #21 | 37.0 | 10.8 | 43.5 | 9.2 | 48.9 | 11.2 | 40.5 | 12.3 | 42.1 | 12.0 | 42.2 | 14.3 | 47.1 | 15.6 |
User #22 | 32.2 | 13.8 | 32.6 | 11.5 | 31.8 | 14.7 | 33.8 | 13.3 | 29.2 | 14.7 | 30.6 | 14.0 | 28.0 | 14.9 |
User #23 | 42.5 | 25.4 | 42.1 | 27.1 | 43.4 | 24.1 | 47.4 | 22.8 | 43.6 | 26.6 | 48.0 | 25.0 | 41.2 | 28.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, M.; Hirsch, M.; Mateos, C.; Zunino, A. Towards Integrating Mobile Devices into Dew Computing: A Model for Hour-Wise Prediction of Energy Availability. Information 2019, 10, 86. https://doi.org/10.3390/info10030086
Longo M, Hirsch M, Mateos C, Zunino A. Towards Integrating Mobile Devices into Dew Computing: A Model for Hour-Wise Prediction of Energy Availability. Information. 2019; 10(3):86. https://doi.org/10.3390/info10030086
Chicago/Turabian StyleLongo, Mathias, Matías Hirsch, Cristian Mateos, and Alejandro Zunino. 2019. "Towards Integrating Mobile Devices into Dew Computing: A Model for Hour-Wise Prediction of Energy Availability" Information 10, no. 3: 86. https://doi.org/10.3390/info10030086
APA StyleLongo, M., Hirsch, M., Mateos, C., & Zunino, A. (2019). Towards Integrating Mobile Devices into Dew Computing: A Model for Hour-Wise Prediction of Energy Availability. Information, 10(3), 86. https://doi.org/10.3390/info10030086