Privacy-Aware MapReduce Based Multi-Party Secure Skyline Computation
Abstract
:1. Introduction
2. Related Work
2.1. Skyline Query
2.2. Secure Skyline Query
2.3. MapReduce-Based Skyline Query
3. Preliminaries
3.1. Adversary Model
3.2. Dominance and
3.3. Order-Preserving Encryption
3.4. Paillier Cryptosystem
- Homomorphic Addition
3.5. Hadoop MapReduce
- Map function to
- Reduce function to
4. Proposed Model
- The privacy of the original values of attributes.
- The privacy of the initial distribution of the values in each attribute of the multi-party databases.
- The privacy of the original order of attribute values in each database.
- The privacy of information about the source of data, which means the privacy of information about which data came from which party.
- Initialization
- Local skyline computation, order-preserving encryption of local skyline objects, and perturbation of the original order of attribute values
- Cell-wise candidate skyline computation distributively and concurrently in each cell
- Global skyline computation from the cell-wise candidate skyline
- Decryption of the global skyline
4.1. Initialization
4.2. Local Skyline Computation, OPE of Original Values, and Perturbation of Original Order
4.2.1. Local Skyline Computation
4.2.2. OPE of the Original Attribute Values of Objects in the Local Skyline
4.2.3. Perturbation of the Original Order
Algorithm 1: Cell-wise object generation with encrypted cell id and translated attribute values. |
4.3. Cell-Wise Candidate Skyline Computation Distributively and Concurrently in Each Cell
4.4. Global Skyline Computation from the Cell-Wise Candidate Skyline
4.5. Decryption of the Global Skyline
5. Scalability and Application of the Proposed Method
6. Privacy and Security
7. Theoretical Analysis of the Proposed Method
- The time required for the calculation of the local skyline, OPE, perturbation, and cell-wise value generation.
- The time needed for the calculation of the cell-wise candidate skyline.
- The time needed for the calculation of the global skyline.
8. Experimental Analysis of the Proposed Method
8.1. Experimental Setup and Datasets
8.2. Analysis of Our Proposed Method for Different Data Distributions
8.3. Analysis of Our Proposed Method with Variation in Object Dimensions
8.4. Comparison of the Proposed Method with the Encrypted Substitution Vector-Based Method
8.5. Comparison of the Proposed Method with Variation in the Number of Participating Parties
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mullesgaard, K.; Laurits Pederseny, J.; Lu, H.; Zhou, Y. Efficient Skyline Computation in MapReduce. In Proceedings of the 17th International Conference on Extending Database Technology (EDBT), Athens, Greece, 24–28 March 2014; pp. 37–48. [Google Scholar]
- Zaman, A.; Siddique, M.A.; Annisa; Morimoto, Y. Secure Computation of Skyline Query in MapReduce. In Advanced Data Mining and Applications; Li, J., Li, X., Wang, S., Li, J., Sheng, Q.Z., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 345–360. [Google Scholar]
- Apache. Welcome to ApacheTMHadoop. Available online: http://hadoop.Apache.org (accessed on 1 May 2019).
- Ryu, H.C.; Jung, S. MapReduce-based Skyline Query Processing Scheme Using Adaptive Two-level Grids. Clust. Comput. 2017, 20, 3605–3616. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, X.; Ku, W.; Qin, X. Efficient Parallel Skyline Evaluation Using MapReduce. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 1996–2009. [Google Scholar] [CrossRef]
- Park, Y.; Min, J.K.; Shim, K. Parallel Computation of Skyline and Reverse Skyline Queries Using Mapreduce. Proc. VLDB Endow. 2013, 6, 2002–2013. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Xiong, L.; Pei, J. Secure Skyline Queries on Cloud Platform. In Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; pp. 633–644. [Google Scholar] [CrossRef]
- Hua, J.; Zhu, H.; Wang, F.; Liu, X.; Lu, R.; Li, H.; Zhang, Y. CINEMA: Efficient and Privacy-Preserving Online Medical Primary Diagnosis with Skyline Query. IEEE Internet Things J. 2018, 6, 1450–1461. [Google Scholar] [CrossRef]
- Liu, X.; Lu, R.; Ma, J.; Chen, L.; Bao, H. Efficient and privacy-preserving skyline computation framework across domains. Future Gener. Comput. Syst. 2016, 62, 161–174. [Google Scholar] [CrossRef]
- Qaosar, M.; Zaman, A.; Siddique, M.A.; Annisa; Morimoto, Y. Privacy-Preserving Secure Computation of Skyline Query in Distributed Multi-Party Databases. Information 2019, 10, 119. [Google Scholar] [CrossRef]
- Borzsonyi, S.; Kossmann, D.; Stocker, K. The skyline operator. In Proceedings of the IEEE International Conference on Data Engineering (ICDE), Heidelberg, Germany, 2–6 April 2001; pp. 421–430. [Google Scholar]
- Chomicki, J.; Godfrey, P.; Gryz, J.; Liang, D. Skyline with Presorting. In Proceedings of the IEEE International Conference on Data Engineering (ICDE), Bangalore, India, 5–8 March 2003; pp. 717–719. [Google Scholar]
- Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. Progressive skyline computation in database systems. ACM Trans. Database Syst. 2005, 30, 41–82. [Google Scholar] [CrossRef]
- Kossmann, D.; Ramsak, F.; Rost, S. Shooting stars in the sky: An online algorithm for skyline queries. In Proceedings of the International Conference on Very Large Data Bases (VLDB), Hong Kong, China, 20–23 August 2002; pp. 275–286. [Google Scholar]
- Veugen, T.; Blom, F.; de Hoogh, S.J.A.; Erkin, Z. Secure Comparison Protocols in the Semi-Honest Model. IEEE J. Sel. Top. Signal Process. 2015, 9, 1217–1228. [Google Scholar] [CrossRef]
- Samanthula, B.K.K.; Chun, H.; Jiang, W. An Efficient and Probabilistic Secure Bit-decomposition. In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security, Hangzhou, China, 8–10 May 2013; ACM: New York, NY, USA, 2013; pp. 541–546. [Google Scholar] [CrossRef]
- Hose, K.; Vlachou, A. A survey of skyline processing in highly distributed environments. VLDB J. 2012, 21, 359–384. [Google Scholar] [CrossRef]
- Hazay, C.; Lindell, Y. Definitions. In Efficient Secure Two-Party Protocols: Techniques and Constructions; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2010; pp. 19–49. [Google Scholar] [CrossRef]
- Agrawal, R.; Kiernan, J.; Srikant, R.; Xu, Y. Order Preserving Encryption for Numeric Data. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, 13–18 June 2004; pp. 563–574. [Google Scholar]
- Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the Advances in Cryptology–Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT)’99, Prague, Czech Republic, 2–6 May 1999; Stern, J., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; pp. 223–238. [Google Scholar] [Green Version]
- Siddique, M.A.; Tian, H.; Morimoto, Y. Distributed Skyline Computation of Vertically Splitted Databases by Using MapReduce. In Proceedings of the International Conference on Database Systems for Advanced Applications, Bali, Indonesia, 21–24 April 2014; pp. 33–45. [Google Scholar]
- Liang, Y.; Ouyang, K.; Jing, L.; Ruan, S.; Liu, Y.; Zhang, J.; Rosenblum, D.S.; Zheng, Y. UrbanFM: Inferring Fine-Grained Urban Flows. arXiv 2019, arXiv:1902.05377. [Google Scholar]
- Alarabi, L.; Mokbel, M.F.; Musleh, M. ST-Hadoop: A MapReduce framework for spatio-temporal data. GeoInformatica 2018, 22, 785–813. [Google Scholar] [CrossRef]
- Huang, Y.K.; He, Z.H. Processing continuous K-nearest skyline query with uncertainty in spatio-temporal databases. J. Intell. Inf. Syst. 2015, 45, 165–186. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Liang, Y.; Liu, S.; Rosenblum, D.S. Urban Water Quality Prediction Based on Multi-task Multi-view Learning. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; AAAI Press: Menlo Park, CA, USA, 2016; pp. 2576–2582. [Google Scholar]
Organization 1 | Organization 2 | ||||
---|---|---|---|---|---|
ID | Cost | Risk | ID | Cost | Risk |
27 | 33 | 22 | 30 | ||
39 | 3 | 48 | 11 | ||
45 | 15 | 32 | 25 | ||
30 | 17 | 36 | 8 | ||
45 | 30 | 42 | 37 |
Party A | Party B | ||||
---|---|---|---|---|---|
ID | Cost | Risk | ID | Cost | Risk |
A01 | 105 | 154 | B01 | 113 | 151 |
A02 | 113 | 149 | B02 | 127 | 111 |
A03 | 124 | 102 | B03 | 131 | 101 |
A04 | 133 | 99 | B04 | 134 | 92 |
A05 | 191 | 85 | B05 | 145 | 84 |
A06 | 144 | 72 | B06 | 159 | 98 |
A07 | 167 | 64 | B07 | 167 | 70 |
A08 | 176 | 55 | B08 | 176 | 60 |
A09 | 191 | 53 | B09 | 191 | 102 |
A10 | 167 | 151 | B10 | 174 | 149 |
A11 | 167 | 98 | B11 | 174 | 87 |
A12 | 191 | 53 | B12 | 191 | 55 |
Global Skyline (OPE) | Global Skyline (Plaintext) | ||
---|---|---|---|
1 | 28 | 105 | 154 |
2 | 25 | 113 | 149 |
3 | 18 | 124 | 102 |
5 | 17 | 131 | 101 |
6 | 15 | 133 | 99 |
9 | 7 | 144 | 72 |
15 | 5 | 167 | 64 |
20 | 2 | 176 | 55 |
25 | 1 | 191 | 53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Qaosar, M.; Zaman, A.; Siddique, M.A.; Li, C.; Alam, K.M.R.; Morimoto, Y. Privacy-Aware MapReduce Based Multi-Party Secure Skyline Computation. Information 2019, 10, 207. https://doi.org/10.3390/info10060207
Ahmed S, Qaosar M, Zaman A, Siddique MA, Li C, Alam KMR, Morimoto Y. Privacy-Aware MapReduce Based Multi-Party Secure Skyline Computation. Information. 2019; 10(6):207. https://doi.org/10.3390/info10060207
Chicago/Turabian StyleAhmed, Saleh, Mahboob Qaosar, Asif Zaman, Md. Anisuzzaman Siddique, Chen Li, Kazi Md. Rokibul Alam, and Yasuhiko Morimoto. 2019. "Privacy-Aware MapReduce Based Multi-Party Secure Skyline Computation" Information 10, no. 6: 207. https://doi.org/10.3390/info10060207
APA StyleAhmed, S., Qaosar, M., Zaman, A., Siddique, M. A., Li, C., Alam, K. M. R., & Morimoto, Y. (2019). Privacy-Aware MapReduce Based Multi-Party Secure Skyline Computation. Information, 10(6), 207. https://doi.org/10.3390/info10060207