Big Data Analytics and Firm Performance: A Systematic Review
Abstract
:1. Introduction
2. Research Methodology
2.1. Protocol Development
2.2. Inclusion, Exclusion, and Search Strategy
3. Analysis of Studies
3.1. Categorization of Publications Based on the WoS
3.2. Year of Publication, Citations, and Publication Outlet
3.3. Theory Focus
3.4. Type of Performance
3.5. Industry Focus and Firm Size
3.6. Country Focus
3.7. Classification of Articles by Methodology
3.8. Structuring the Contribution based on the Terms and Factors that Lead to Successful Use of Big Data Analytics and Improvement of Firm Performance
4. Discussion, Future Research Directions, and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mikalef, P.; Pappas, I.O.; Krogstie, J.; Giannakos, M. Big data analytics capabilities: A systematic literature review and research agenda. Inf. Syst. E Bus. Manag. 2018, 16, 547–578. [Google Scholar] [CrossRef]
- Constantiou, I.D.; Kallinikos, J. New Games, New Rules: Big Data and the Changing Context of Strategy. J. Inf. Technol. 2015, 30, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Gillon, K.; Brynjolfsson, E.; Mithas, S.; Griffin, J.; Gupta, M. Business analytics: Radical shift or incremental change? Commun. Assoc. Inf. Syst. 2014, 34, 287–296. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; McAfee, A. Race Against the Machine: How the Digital Revolution is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment and the Economy; Digital Frontier Press: Chengdu, China, 2012. [Google Scholar]
- Ghasemaghaei, M.; Hassanein, K.; Turel, O. Increasing firm agility through the use of data analytics: The role of fit. Decis. Support Syst. 2017, 101, 95–105. [Google Scholar] [CrossRef]
- Ashrafi, A.; Zare Ravasan, A. How market orientation contributes to innovation and market performance: The roles of business analytics and flexible IT infrastructure. J. Bus. Ind. Mark. 2018, 33, 970–983. [Google Scholar] [CrossRef]
- Rialti, R.; Marzi, G.; Ciappei, C.; Busso, D. Big data and dynamic capabilities: A bibliometric analysis and systematic literature review. Manag. Decis. 2019. [Google Scholar] [CrossRef]
- Ardito, L.; Scuotto, V.; Del Giudice, M.; Petruzzelli, A.M. A bibliometric analysis of research on Big Data analytics for business and management. Manag. Decis. 2019. [Google Scholar] [CrossRef]
- Wamba, S.F.; Akter, S.; Edwards, A.; Chopin, G.; Gnanzou, D. How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 2015, 165, 234–246. [Google Scholar] [CrossRef]
- Wamba, S.F.; Mishra, D. Big data integration with business processes: A literature review. Bus. Process Manag. J. 2017, 23, 477–492. [Google Scholar] [CrossRef]
- Shi, P.; Cui, Y.; Xu, K.; Zhang, M.; Ding, L. Data Consistency Theory and Case Study for Scientific Big Data. Information 2019, 10, 137. [Google Scholar] [CrossRef]
- Khan, N.; Yaqoob, I.; Hashem, I.A.T.; Inayat, Z.; Mahmoud Ali, W.K.; Alam, M.; Shiraz, M.; Gani, A. Big Data: Survey, Technologies, Opportunities, and Challenges. Sci. World J. 2014, 2014, 18. [Google Scholar] [CrossRef] [PubMed]
- Snijders, C.; Matzat, U.; Reips, U.-D. Big Data: Big gaps of knowledge in the field of internet science. Int. J. Internet Sci. 2012, 7, 1–5. [Google Scholar]
- Sundblad, M. Nordic Big Data and Analytics Forecast, 2018–2022; IDC: Framingham, MA, USA, March 2019. [Google Scholar]
- Beneventano, D.; Vincini, M. Foreword to the Special Issue: Semantics for Big Data Integration. Information 2019, 10, 68. [Google Scholar] [CrossRef]
- Ji-fan Ren, S.; Wamba, S.F.; Akter, S.; Dubey, R.; Childe, S.J. Modelling quality dynamics, business value and firm performance in a big data analytics environment. Int. J. Prod. Res. 2017, 55, 5011–5026. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Brands, K. Big Data and Business Intelligence for Management Accountants. Strateg. Financ. 2014, 96, 64–65. [Google Scholar]
- Hagel, J. Bringing analytics to life. J. Account. 2015, 219, 24. [Google Scholar]
- Tweney, D. Walmart Scoops up Inkiru to Bolster Its ‘Big Data’ Capabilities Online. Available online: https://venturebeat.com/2013/06/10/walmart-scoops-up-inkiru-to-bolster-its-big-data-capabilities-online/ (accessed on 25 May 2019).
- Liu, Y. Big data and predictive business analytics. J. Bus. Forecast. 2014, 33, 40. [Google Scholar]
- Davenport, T.H.; Barth, P.; Bean, R. How big data is different. MIT Sloan Manag. Rev. 2012, 54, 43. [Google Scholar]
- Wilkins, J. Big Data and Its Impact on Manufacturing. Available online: http://www.dpaonthenet.net/article/65238/Big-data-and-its-impact-on-manufacturing.aspx (accessed on 25 May 2019).
- Gardner, D. Ford Scours for More Big Data to Bolster Quality, Improve Manufacturing, Streamline Processes. Available online: https://www.zdnet.com/article/ford-scours-for-more-big-data-to-bolster-quality-improve-manufacturing-streamline-processes/ (accessed on 25 May 2019).
- Schroeck, M.; Shockley, R.; Smart, J.; Romero-Morales, D.; Tufano, P. Analytics: The real-world use of big data. IBM Glob. Bus. Serv. 2012, 12, 1–20. [Google Scholar]
- Manyika, J.; Chui, M.; Institute, M.G.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A.H. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey: New York, NY, USA, 2011. [Google Scholar]
- Barton, D.; Court, D. Making advanced analytics work for you. Harv. Bus. Rev. 2012, 90, 78–83. [Google Scholar] [PubMed]
- McAfee, A.; Brynjolfsson, E.; Davenport, T.H.; Patil, D.; Barton, D. Big data: The management revolution. Harv. Bus. Rev. 2012, 90, 60–68. [Google Scholar] [PubMed]
- Ramaswamy, S. What the Companies Winning at Big Data do Differently. Available online: https://hbr.org/2013/06/what-the-companies-winning-at (accessed on 25 May 2019).
- Srinivasan, U.; Arunasalam, B. Leveraging Big Data Analytics to Reduce Healthcare Costs. IT Prof. 2013, 15, 21–28. [Google Scholar] [CrossRef]
- Chen, D.Q.; Preston, D.S.; Swink, M. How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. J. Manag. Inf. Syst. 2015, 32, 4–39. [Google Scholar] [CrossRef]
- Akter, S.; Wamba, S.F.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. Mis Q. 2002, xiii–xxiii. [Google Scholar]
- Raguseo, E.; Vitari, C. Investments in big data analytics and firm performance: An empirical investigation of direct and mediating effects. Int. J. Prod. Res. 2018, 1–16. [Google Scholar] [CrossRef]
- Mandal, S. An examination of the importance of big data analytics in supply chain agility development: A dynamic capability perspective. Manag. Res. Rev. 2018, 41, 1201–1219. [Google Scholar] [CrossRef]
- Zhan, Y.; Tan, K.H.; Li, Y.; Tse, Y.K. Unlocking the power of big data in new product development. Ann. Oper. Res. 2018, 270, 577–595. [Google Scholar] [CrossRef]
- Côrte-Real, N.; Oliveira, T.; Ruivo, P. Assessing business value of Big Data Analytics in European firms. J. Bus. Res. 2017, 70, 379–390. [Google Scholar] [CrossRef]
- Gravili, G.; Benvenuto, M.; Avram, A.; Viola, C. The influence of the Digital Divide on Big Data generation within supply chain management. Int. J. Logist. Manag. 2018, 29, 592–628. [Google Scholar] [CrossRef]
- Gupta, M.; George, J.F. Toward the development of a big data analytics capability. Inf. Manag. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- Hughes, S.F. A new model for identifying emerging technologies. J. Intell. Stud. Bus. 2017, 7, 79–86. [Google Scholar]
- Vera-Baquero, A.; Colomo-Palacios, R.; Molloy, O. Business Process Analytics Using a Big Data Approach. IT Prof. 2013, 15, 29–35. [Google Scholar] [CrossRef]
- Popovič, A.; Hackney, R.; Tassabehji, R.; Castelli, M. The impact of big data analytics on firms’ high value business performance. Inf. Syst. Front. 2018, 20, 209–222. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, N.; Shin, B. Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 2014, 34, 387–394. [Google Scholar] [CrossRef]
- Wamba, S.F.; Akter, S.; Kang, H.; Bhattacharya, M.; Upal, M. The primer of social media analytics. J. Organ. End User Comput. (JOEUC) 2016, 28, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Hajli, N. Exploring the path to big data analytics success in healthcare. J. Bus. Res. 2017, 70, 287–299. [Google Scholar] [CrossRef]
- Wang, Y.; Byrd, T.A. Business analytics-enabled decision-making effectiveness through knowledge absorptive capacity in health care. J. Knowl. Manag. 2017, 21, 517–539. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Gong, Q.; Wang, S. Information processing structures and decision making delays in MRP and JIT. Int. J. Prod. Econ. 2017, 188, 41–49. [Google Scholar] [CrossRef]
- Wang, Y.; Kung, L.; Wang, W.Y.C.; Cegielski, C.G. An integrated big data analytics-enabled transformation model: Application to health care. Inf. Manag. 2018, 55, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Müller, O.; Fay, M.; vom Brocke, J. The Effect of Big Data and Analytics on Firm Performance: An Econometric Analysis Considering Industry Characteristics. J. Manag. Inf. Syst. 2018, 35, 488–509. [Google Scholar] [CrossRef]
- Lai, Y.; Sun, H.; Ren, J. Understanding the determinants of big data analytics (BDA) adoption in logistics and supply chain management: An empirical investigation. Int. J. Logist. Manag. 2018, 29, 676–703. [Google Scholar] [CrossRef]
- Rialti, R.; Marzi, G.; Silic, M.; Ciappei, C. Ambidextrous organization and agility in big data era: The role of business process management systems. Bus. Process Manag. J. 2018, 24, 1091–1109. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big Data Analytics Capabilities and Innovation: The Mediating Role of Dynamic Capabilities and Moderating Effect of the Environment. Br. J. Manag. 2019, 30, 272–298. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics and firm performance: Findings from a mixed-method approach. J. Bus. Res. 2019, 98, 261–276. [Google Scholar] [CrossRef]
- Arnaboldi, M. The Missing Variable in Big Data for Social Sciences: The Decision-Maker. Sustainability 2018, 10, 3415. [Google Scholar] [CrossRef]
- Vidgen, R.; Shaw, S.; Grant, D.B. Management challenges in creating value from business analytics. Eur. J. Oper. Res. 2017, 261, 626–639. [Google Scholar] [CrossRef]
- Cillo, V.; Rialti, R.; Del Giudice, M.; Usai, A. Niche tourism destinations’ online reputation management and competitiveness in big data era: Evidence from three Italian cases. Curr. Issues Tour. 2019, 1–15. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. A survey towards an integration of big data analytics to big insights for value-creation. Inf. Process. Manag. 2018, 54, 758–790. [Google Scholar] [CrossRef]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.-F.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Maroufkhani, P.; Wagner, R.; Wan Ismail, W.K. Entrepreneurial ecosystems: A systematic review. J. Enterp. Communities People Places Glob. Econ. 2018, 12, 545–564. [Google Scholar] [CrossRef]
- Chibucos, T.R.; Leite, R.W.; Weis, D.L. Readings in Family Theory; Sage Publishing: Thousand Oaks, CA, USA, 2005. [Google Scholar]
- Fernández, E.; Iglesias-Antelo, S.; López-López, V.; Rodríguez-Rey, M.; Fernandez-Jardon, C.M. Firm and industry effects on small, medium-sized and large firms’ performance. BRQ Bus. Res. Q. 2019, 22, 25–35. [Google Scholar] [CrossRef]
- MSCI. The Global Industry Classification Standard (GICS®). Available online: https://www.msci.com/gics (accessed on 25 May 2019).
- Subrahmanya, B.M.H.; Mathirajan, M.; Krishnaswamy, K.N. Importance of Technological Innovation for SME Growth; UNU-WIDER: Helsinki, Finland, 2010; Volume 2010. [Google Scholar]
- OECD. Enhancing the Contributions of SMEs in a Global and Digitalised Economy. In Proceedings of the OECD Council at Ministiral Level, Paris, France, 7–8 June 2017. [Google Scholar]
- The World Bank. World Bank Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519c (accessed on 25 May 2019).
- Knight, S.; Ots, R.; Maimbo, M.; Drake, T.; Fairfield, C.; Harrison, E. Systematic review of the use of big data to improve surgery in low-and middle-income countries. Br. J. Surg. 2019, 106, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Olszak, C.M. Towards an understanding of Business Intelligence. A dynamic capability-based framework for Business Intelligence. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 1103–1110. [Google Scholar]
- Xu, P.; Kim, J. Achieving Dynamic Capabilities with Business Intelligence. In Proceedings of the Pacific Asia Conference on Information Systems (PACIS), Chengdu, China, 24–28 June 2014; p. 330. [Google Scholar]
- Santoro, G.; Fiano, F.; Bertoldi, B.; Ciampi, F. Big data for business management in the retail industry. Manag. Decis. 2018. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Complementarities Between Information Governance and Big Data Analytics Capabilities on Innovation. In Proceedings of the European Conference on Information Systems (ECIS), Portsmouth, UK, 23–28 June 2018. [Google Scholar]
- Bansal, V.; Poddar, A.; Ghosh-Roy, R. Identifying a Medical Department Based on Unstructured Data: A Big Data Application in Healthcare. Information 2019, 10, 25. [Google Scholar] [CrossRef]
- Islam, M.S.; Hasan, M.M.; Wang, X.; Germack, H.D.; Noor-E-Alam, M. A Systematic Review on Healthcare Analytics: Application and Theoretical Perspective of Data Mining. Healthcare 2018, 6, 54. [Google Scholar] [CrossRef]
- Amato, F.; Marrone, S.; Moscato, V.; Piantadosi, G.; Picariello, A.; Sansone, C. HOLMeS: eHealth in the Big Data and Deep Learning Era. Information 2019, 10, 34. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Hong, T.S.; Sabouri, M.S.; Zulkifli, N. Strategies for Successful Information Technology Adoption in Small and Medium-sized Enterprises. Information 2012, 3, 36–67. [Google Scholar] [CrossRef] [Green Version]
- Ferraris, A.; Mazzoleni, A.; Devalle, A.; Couturier, J. Big data analytics capabilities and knowledge management: Impact on firm performance. Manag. Decis. 2018. [Google Scholar] [CrossRef]
- Rialti, R.; Marzi, G.; Ciappei, C.; Pellegrini, M. Organizational Resilience and Big Data Analytics: Could Analytical, Automatic, Adaptive and Agile Information Systems Open the Cage? In Proceedings of the LAEMOS Conference, Buenos Aires, Argentina, 22–24 March 2018. [Google Scholar]
- Dremel, C.; Herterich, M.M.; Wulf, J.; vom Brocke, J. Actualizing big data analytics affordances: A revelatory case study. Inf. Manag. 2018. [Google Scholar] [CrossRef]
- Ghasemaghaei, M. Are firms ready to use big data analytics to create value? The role of structural and psychological readiness. Enterp. Inf. Syst. 2019, 13, 650–674. [Google Scholar] [CrossRef]
- Conboy, K.; Dennehy, D.; O’Connor, M. Big time: An examination of temporal complexity and business value in analytics. Inf. Manag. 2018. [Google Scholar] [CrossRef]
Journal Name | Number of Publications | |||||||
---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Total | |
Journal of Business Research | 3 | 1 | 4 | |||||
Business Process Management Journal | 1 | 1 | 1 | 3 | ||||
Information & Management | 1 | 1 | 2 | |||||
International Journal of Logistics Management | 2 | 2 | ||||||
International Journal of Production Economics | 1 | 1 | 2 | |||||
International Journal of Production Research | 1 | 1 | 2 | |||||
Journal of Management Information Systems | 1 | 1 | 2 | |||||
Annals of Operations Research | 1 | 1 | ||||||
Decision Support Systems | 1 | 1 | ||||||
Information Systems and E-Business Management | 1 | 1 | ||||||
Information Systems Frontiers | 1 | 1 | ||||||
International Journal of Information Management | 1 | 1 | ||||||
IT Professional | 1 | 1 | ||||||
Journal of Business & Industrial Marketing | 1 | 1 | ||||||
Journal of Intelligence Studies in Business | 1 | 1 | ||||||
Journal of Knowledge Management | 1 | 1 | ||||||
Journal of Organizational and End User Computing | 1 | 1 | ||||||
Management Research Review | 1 | 1 | ||||||
Information Processing & Management | 1 | 1 | ||||||
Sustainability | 1 | 1 | ||||||
European Journal of Operational Research | 1 | 1 | ||||||
British Journal of Management | 1 | 1 | ||||||
Current Issues in Tourism | 1 | 1 | ||||||
Total Per Year | 1 | 1 | 1 | 3 | 10 | 13 | 4 | 33 |
Theory | Frequency of Publications | Citations | Publications/Citations |
---|---|---|---|
Resource-based view and related theories | 18 | 529 | 29.39 |
Dynamic capability theory | 9 | 119 | 13.22 |
Information-processing theory/Information system theory | 3 | 107 | 35.67 |
Diffusion of innovation theory | 2 | 4 | 2 |
Not specified | 2 | 9 | 4.5 |
Socio-materialism | 2 | 149 | 74.5 |
Task Technology Fit theory/Fit theory | 2 | 24 | 12 |
Technological, Organizational, and Environmental model | 2 | 45 | 22.5 |
Behavioral perspectives | 1 | 0 | 0 |
Complexity theory | 1 | 9 | 9 |
Contingency theory | 1 | 1 | 1 |
Cultural perspective | 1 | 1 | 1 |
Customer involvement approach (consumers’ behavior) | 1 | 1 | 1 |
Disruptive innovation | 1 | 1 | 1 |
Entanglement view of socio-materialism | 1 | 24 | 24 |
Integrated model | 1 | 0 | 0 |
Isomorphism | 1 | 117 | 117 |
Market orientation/market intelligence perspective | 1 | 0 | 0 |
Reciprocity theory | 1 | 37 | 37 |
Unified Technology Acceptance and Usage theory | 1 | 7 | 7 |
Value chain framework | 1 | 3 | 3 |
Journal | Number of Papers | Total Number of Citations | ||||||
---|---|---|---|---|---|---|---|---|
Review | Case Study | Survey | Exploratory Qualitative Research | Mathematical or Econometric Modelling | Action Research | Delphi | ||
Journal of Business Research | 0 | 2 | 3 | 1 | 0 | 0 | 0 | 146 |
Business Process Management Journal | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 9 |
International Journal of Logistics Management | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 4 |
Journal of Management Information Systems | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 45 |
Current Issues in Tourism | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
European Journal of Operational Research | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 17 |
Information & Management | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 56 |
Information Systems Frontiers | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 |
International Journal of Production Economics | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 62 |
International Journal of Production Research | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 103 |
Annals of Operations Research | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
British Journal of Management | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Decision Support Systems | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 9 |
Information Processing & Management | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
Information Systems and E-Business Management | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
International Journal of Information Management | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 117 |
IT Professional | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 37 |
Journal of Business & Industrial Marketing | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Journal of Intelligence Studies in Business | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Journal of Knowledge Management | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 15 |
Journal of Organizational and End User Computing | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
Management Research Review | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Sustainability | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Total number of papers | 10 | 9 | 15 | 3 | 2 | 1 | 1 | - |
Total number of citations | 86 | 118 | 452 | 6 | 6 | 1 | 17 | 655 |
Citations/publications | 8.6 | 13.11 | 30.13 | 2 | 3 | 1 | 17 | - |
Term | Frequency of Use |
---|---|
Big data analytics capability/assets | 15 |
Big data analytics-capable business process management systems | 2 |
Data analytics | 5 |
Big data analytics solution | 4 |
Business intelligence | 3 |
Business analytics/Business analytics capabilities | 11 |
Social media analytics | 3 |
Big data analytics | 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maroufkhani, P.; Wagner, R.; Wan Ismail, W.K.; Baroto, M.B.; Nourani, M. Big Data Analytics and Firm Performance: A Systematic Review. Information 2019, 10, 226. https://doi.org/10.3390/info10070226
Maroufkhani P, Wagner R, Wan Ismail WK, Baroto MB, Nourani M. Big Data Analytics and Firm Performance: A Systematic Review. Information. 2019; 10(7):226. https://doi.org/10.3390/info10070226
Chicago/Turabian StyleMaroufkhani, Parisa, Ralf Wagner, Wan Khairuzzaman Wan Ismail, Mas Bambang Baroto, and Mohammad Nourani. 2019. "Big Data Analytics and Firm Performance: A Systematic Review" Information 10, no. 7: 226. https://doi.org/10.3390/info10070226
APA StyleMaroufkhani, P., Wagner, R., Wan Ismail, W. K., Baroto, M. B., & Nourani, M. (2019). Big Data Analytics and Firm Performance: A Systematic Review. Information, 10(7), 226. https://doi.org/10.3390/info10070226