Computer Vision-Based Unobtrusive Physical Activity Monitoring in School by Room-Level Physical Activity Estimation: A Method Proposition
Abstract
:1. Introduction
2. Methods of Assessing Physical Activity of Children
3. Spatio-Temporal Distribution of Physical Activity in School
4. Method Proposition
5. The Promise of Computer Vision
6. Action Intensity Classification by Acceleration Vector Magnitude Estimation
7. Discussion
8. Conclusions and Future Work
Funding
Conflicts of Interest
References
- World Health Organization. World Health Statistics 2018: Monitoring Health for the SDGs; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-156558-5. [Google Scholar]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Kohl, H.W.; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef]
- Burns, R.D.; Fu, Y.; Podlog, L.W. School-based physical activity interventions and physical activity enjoyment: A meta-analysis. Prev. Med. 2017, 103, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, B.; Henley, W.; Wilkin, T. Effectiveness of intervention on physical activity of children: Systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ 2012, 345, e5888. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, A.; Hughes, A.R.; Bonnar, L.; Booth, J.N.; Reilly, J.J. An active play intervention to improve physical activity and fundamental movement skills in children of low socio-economic status: Feasibility cluster randomised controlled trial. Pilot Feasibility Stud. 2019, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, C.; Lester, A.; Owen, K.B.; White, R.L.; Peralta, L.; Kirwan, M.; Diallo, T.M.O.; Maeder, A.J.; Bennie, A.; MacMillan, F.; et al. An internet-supported school physical activity intervention in low socioeconomic status communities: Results from the Activity and Motivation in Physical Education (AMPED) cluster randomised controlled trial. Br. J. Sports Med. 2019, 53, 341–347. [Google Scholar] [CrossRef] [PubMed]
- González-Cutre, D.; Sierra, A.C.; Beltrán-Carrillo, V.J.; Peláez-Pérez, M.; Cervelló, E. A school-based motivational intervention to promote physical activity from a self-determination theory perspective. J. Educ. Res. 2018, 111, 320–330. [Google Scholar] [CrossRef]
- Love, R.; Adams, J.; Sluijs, E.M.F. van Are school-based physical activity interventions effective and equitable? A meta-analysis of cluster randomized controlled trials with accelerometer-assessed activity. Obes. Rev. 2019, 20, 859–870. [Google Scholar] [CrossRef]
- Van Sluijs, E.M.F.; McMinn, A.M.; Griffin, S.J. Effectiveness of interventions to promote physical activity in children and adolescents: Systematic review of controlled trials. BMJ 2007, 335, 703. [Google Scholar] [CrossRef]
- Dobbins, M.; Husson, H.; DeCorby, K.; LaRocca, R.L. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Mura, G.; Rocha, N.B.F.; Helmich, I.; Budde, H.; Machado, S.; Wegner, M.; Nardi, A.E.; Arias-Carrión, O.; Vellante, M.; Baum, A.; et al. Physical Activity Interventions in Schools for Improving Lifestyle in European Countries. Clin. Pract. Epidemiol. Ment. Health 2015, 11, 77–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, R.S.; Salvo, D.; Ogilvie, D.; Lambert, E.V.; Goenka, S.; Brownson, R.C. Scaling up physical activity interventions worldwide: Stepping up to larger and smarter approaches to get people moving. Lancet 2016, 388, 1337–1348. [Google Scholar] [CrossRef]
- Naylor, P.-J.; Nettlefold, L.; Race, D.; Hoy, C.; Ashe, M.C.; Wharf Higgins, J.; McKay, H.A. Implementation of school based physical activity interventions: A systematic review. Prev. Med. 2015, 72, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- WHO. What Is Moderate-Intensity and Vigorous-Intensity Physical Activity? Available online: https://www.who.int/dietphysicalactivity/physical_activity_intensity/en/ (accessed on 11 June 2019).
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.M.; Ekelund, U.; Besson, H.; Mezzani, A.; Geladas, N.; Vanhees, L. Assessment of physical activity–A review of methodologies with reference to epidemiological research: A report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Adamo, K.B.; Prince, S.A.; Tricco, A.C.; Connor-Gorber, S.; Tremblay, M. A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: A systematic review. Int. J. Pediatr. Obes. 2009, 4, 2–27. [Google Scholar] [CrossRef] [PubMed]
- Steene-Johannessen, J.; Anderssen, S.A.; van der Ploeg, H.P.; Hendriksen, I.J.M.; Donnelly, A.E.; Brage, S.; Ekelund, U. Are Self-report Measures Able to Define Individuals as Physically Active or Inactive? Med. Sci. Sports Exerc. 2016, 48, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorzelitz, J.; Peppard, P.E.; Malecki, K.; Gennuso, K.; Nieto, F.J.; Cadmus-Bertram, L. Predictors of discordance in self-report versus device-measured physical activity measurement. Ann. Epidemiol. 2018, 28, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Mindell, J.S.; Coombs, N.; Stamatakis, E. Measuring physical activity in children and adolescents for dietary surveys: Practicalities, problems and pitfalls. Proc. Nutr. Soc. 2014, 73, 218–225. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, T.L.; van der Mars, H. Top 10 Research Questions Related to Assessing Physical Activity and Its Contexts Using Systematic Observation. Res. Q. Exerc. Sport 2015, 86, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Schoeller, D.A. Measurement of Energy Expenditure in Free-Living Humans by Using Doubly Labeled Water. J. Nutr. 1988, 118, 1278–1289. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Deurenberg, P.; Hautvast, J.G. A critical evaluation of heart rate monitoring to assess energy expenditure in individuals. Am. J. Clin. Nutr. 1993, 58, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Dugas, L.R.; Merwe, L.V.D.; Odendaal, H.; Noakes, T.D.; Lambert, E.V. A Novel Energy Expenditure Prediction Equation for Intermittent Physical Activity. Med. Sci. Sports Exerc. 2005, 37, 2154–2161. [Google Scholar] [CrossRef]
- Brage, S.; Brage, N.; Franks, P.W.; Ekelund, U.; Wareham, N.J. Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur. J. Clin. Nutr. 2005, 59, 561. [Google Scholar] [CrossRef] [PubMed]
- Corder, K.; Brage, S.; Wareham, N.J.; Ekelund, U. Comparison of PAEE from combined and separate heart rate and movement models in children. Med. Sci. Sports Exerc. 2005, 37, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- McNamara, E.; Hudson, Z.; Taylor, S.J.C. Measuring activity levels of young people: The validity of pedometers. Br. Med. Bull. 2010, 95, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Chau, L. Validation of the Fitbit Zip for monitoring physical activity among free-living adolescents. BMC Res. Notes 2016, 9, 448. [Google Scholar] [CrossRef]
- Mooses, K.; Oja, M.; Reisberg, S.; Vilo, J.; Kull, M. Validating Fitbit Zip for monitoring physical activity of children in school: A cross-sectional study. BMC Public Health 2018, 18, 858. [Google Scholar] [CrossRef]
- Godfrey, A.; Conway, R.; Meagher, D.; ÓLaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys. 2008, 30, 1364–1386. [Google Scholar] [CrossRef] [PubMed]
- Plasqui, G.; Westerterp, K.R. Physical Activity Assessment With Accelerometers: An Evaluation Against Doubly Labeled Water. Obesity 2007, 15, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of accelerometer methods for physical activity research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, D.S.; Evenson, K.R.; Vaughn, A.; Rodgers, A.B.; Troiano, R.P. Accelerometer use in physical activity: Best practices and research recommendations. Med. Sci. Sports Exerc. 2005, 37, S582–S588. [Google Scholar] [CrossRef] [PubMed]
- Cain, K.L.; Sallis, J.F.; Conway, T.L.; Van Dyck, D.; Calhoon, L. Using Accelerometers in Youth Physical Activity Studies: A Review of Methods. J. Phys. Act. Health 2013, 10, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.; Loprinzi, P.; Moore, R.; Pfeiffer, K. Comparison of Accelerometer Cut Points for Predicting Activity Intensity in Youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef]
- Brug, J.; van der Ploeg, H.P.; Loyen, A.; Ahrens, W.; Allais, O.; Andersen, L.F.; Cardon, G.; Capranica, L.; Chastin, S.; De Bourdeaudhuij, I.; et al. Determinants of diet and physical activity (DEDIPAC): A summary of findings. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 150. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Smith, M.P.; Standl, M.; Heinrich, J.; Schulz, H. Accelerometric estimates of physical activity vary unstably with data handling. PLoS ONE 2017, 12, e0187706. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Tudor-Locke, C.; Löf, M.; Esteban-Cornejo, I.; Molina-Garcia, P.; Mora-Gonzalez, J.; Rodriguez-Ayllon, M.; Garcia-Marmol, E.; Ekelund, U.; et al. Comparability of published cut-points for the assessment of physical activity: Implications for data harmonization. Scand. J. Med. Sci. Sports 2019, 29, 566–574. [Google Scholar] [CrossRef]
- Mannini, A.; Sabatini, A.M. Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers. Sensors 2010, 10, 1154–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, C.C.T.; Barnes, C.M.; Stratton, G.; McNarry, M.A.; Mackintosh, K.A.; Summers, H.D. A Review of Emerging Analytical Techniques for Objective Physical Activity Measurement in Humans. Sports Med. 2017, 47, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Fergus, P.; Hussain, A.J.; Hearty, J.; Fairclough, S.; Boddy, L.; Mackintosh, K.; Stratton, G.; Ridgers, N.; Al-Jumeily, D.; Aljaaf, A.J.; et al. A machine learning approach to measure and monitor physical activity in children. Neurocomputing 2017, 228, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.K.; Tjondronegoro, D.; Zhang, J.; Hagenbuchner, M.; Cliff, D.; Trost, S.G. Deep learning for energy expenditure prediction in pre-school children. In Proceedings of the IEEE Conference on Biomedical and Health Informatics, Las Vegas, NA, USA, 4–7 March 2018. [Google Scholar]
- Trost, S.G.; Zheng, Y.; Wong, W.-K. Machine learning for activity recognition: Hip versus wrist data. Physiol. Meas. 2014, 35, 2183–2189. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Akopian, D. Physical activity recognition by smartphones, a survey. Biocybern. Biomed. Eng. 2017, 37, 388–400. [Google Scholar] [CrossRef]
- Bort-Roig, J.; Gilson, N.D.; Puig-Ribera, A.; Contreras, R.S.; Trost, S.G. Measuring and Influencing Physical Activity with Smartphone Technology: A Systematic Review. Sports Med. 2014, 44, 671–686. [Google Scholar] [CrossRef]
- Lau, P.W.; Lau, E.Y.; Wong, D.P.; Ransdell, L. A Systematic Review of Information and Communication Technology–Based Interventions for Promoting Physical Activity Behavior Change in Children and Adolescents. J. Med. Internet Res. 2011, 13, e48. [Google Scholar] [CrossRef]
- Hicks, J.L.; Althoff, T.; Sosic, R.; Kuhar, P.; Bostjancic, B.; King, A.C.; Leskovec, J.; Delp, S.L. Best practices for analyzing large-scale health data from wearables and smartphone apps. Npj Digit. Med. 2019, 2, 45. [Google Scholar] [CrossRef]
- Welk, G.J.; Corbin, C.B.; Dale, D. Measurement Issues in the Assessment of Physical Activity in Children. Res. Q. Exerc. Sport 2000, 71, 59–73. [Google Scholar] [CrossRef]
- Nilsson, A.; Ekelund, U.; Yngve, A.; Söström, M. Assessing Physical Activity among Children with Accelerometers Using Different Time Sampling Intervals and Placements. Pediatr. Exerc. Sci. 2002, 14, 87–96. [Google Scholar] [CrossRef]
- Crocker, P.R.E.; Holowachuk, D.R.; Kowalski, K.C. Feasibility of Using the Tritrac Motion Sensor over a 7-Day Trial with Older Children. Pediatr. Exerc. Sci. 2001, 13, 70–81. [Google Scholar] [CrossRef]
- Van, P.C.; Harnack, L.; Schmitz, K.; Fulton, J.E.; Galuska, D.A.; Gao, S. Feasibility of using accelerometers to measure physical activity in young adolescents. Med. Sci. Sports Exerc. 2005, 37, 867–871. [Google Scholar] [CrossRef]
- Colley, R.; Gorber, S.C.; Tremblay, M.S. Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Rep. 2010, 21, 63–64. [Google Scholar] [PubMed]
- OECD. Education at a Glance 2018: OECD Indicators; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Delidou, E.; Matsouka, O.; Nikolaidis, C. Influence of school playground size and equipment on the physical activity of students during recess. Eur. Phys. Educ. Rev. 2016, 22, 215–224. [Google Scholar] [CrossRef]
- Brittin, J.; Sorensen, D.; Trowbridge, M.; Lee, K.K.; Breithecker, D.; Frerichs, L.; Huang, T. Physical Activity Design Guidelines for School Architecture. PLoS ONE 2015, 10, e0132597. [Google Scholar] [CrossRef] [PubMed]
- Ridgers, N.D.; Stratton, G.; Fairclough, S.J.; Twisk, J.W.R. Long-term effects of a playground markings and physical structures on children’s recess physical activity levels. Prev. Med. 2007, 44, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Aggio, D.; Knock, G.; Kipps, C.; Shankar, A.; Smith, L. Effect of major school playground reconstruction on physical activity and sedentary behaviour: Camden active spaces. BMC Public Health 2017, 17, 552. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, C.S.; Andersen, H.B.; Troelsen, J.; Schipperijn, J. Children’s Physical Activity Behavior during School Recess: A Pilot Study Using GPS, Accelerometer, Participant Observation, and Go-Along Interview. PLoS ONE 2016, 11, e0148786. [Google Scholar] [CrossRef] [PubMed]
- Murillo Pardo, B.; García Bengoechea, E.; Generelo Lanaspa, E.; Bush, P.L.; Zaragoza Casterad, J.; Julián Clemente, J.A.; García González, L. Promising school-based strategies and intervention guidelines to increase physical activity of adolescents. Health Educ. Res. 2013, 28, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlowski, C.S.; Andersen, H.B.; Tjørnhøj-Thomsen, T.; Troelsen, J.; Schipperijn, J. Space, body, time and relationship experiences of recess physical activity: A qualitative case study among the least physical active schoolchildren. BMC Public Health 2016, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Nicaise, V.; Kahan, D.; Reuben, K.; Sallis, J.F. Evaluation of a Redesigned Outdoor Space on Preschool Children’s Physical Activity During Recess. Pediatr. Exerc. Sci. 2012, 24, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Deterding, S.; Sicart, M.; Nacke, L.; O’Hara, K.; Dixon, D. Gamification. Using Game-design Elements in Non-gaming Contexts. In Proceedings of the CHI ’11 Extended Abstracts on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011. [Google Scholar] [CrossRef]
- King, D.; Greaves, F.; Exeter, C.; Darzi, A. ‘Gamification’: Influencing health behaviours with games. J. R. Soc. Med. 2013, 106, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Hamari, J.; Koivisto, J.; Sarsa, H. Does Gamification Work? A Literature Review of Empirical Studies on Gamification. In Proceedings of the 47th Hawaii International Conference on System Sciences, Hawaii, HI, USA, 6–9 January 2014. [Google Scholar] [CrossRef]
- Bailey, B.W.; McInnis, K. Energy Cost of Exergaming: A Comparison of the Energy Cost of 6 Forms of Exergaming. Arch. Pediatr. Adolesc. Med. 2011, 165, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Perron, R.M.; Graham, C.A.; Feldman, J.R.; Moffett, R.A.; Hall, E.E. Do exergames allow children to achieve physical activity intensity commensurate with national guidelines? Int. J. Exerc. Sci. 2011, 4, 257–264. [Google Scholar] [PubMed]
- Gao, Z.; Chen, S.; Stodden, D.F. A Comparison of Children’s Physical Activity Levels in Physical Education, Recess, and Exergaming. J. Phys. Act. Health 2015, 12, 349–354. [Google Scholar] [CrossRef]
- Huang, H.-C.; Nguyen, H.V.; Cheng, T.C.E.; Wong, M.-K.; Chiu, H.-Y.; Yang, Y.-H.; Teng, C.-I. A Randomized Controlled Trial on the Role of Enthusiasm About Exergames: Players’ Perceptions of Exercise. Games Health J. 2018, 8, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, T.; Blumberg, F.; Buday, R.; DeSmet, A.; Fiellin, L.E.; Green, C.S.; Kato, P.M.; Lu, A.S.; Maloney, A.E.; Mellecker, R.; et al. Games for Health for Children—Current Status and Needed Research. Games Health J. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Fjørtoft, I.; Kristoffersen, B.; Sageie, J. Children in schoolyards: Tracking movement patterns and physical activity in schoolyards using global positioning system and heart rate monitoring. Landsc. Urban Plan. 2009, 93, 210–217. [Google Scholar] [CrossRef]
- Dessing, D.; Pierik, F.H.; Sterkenburg, R.P.; van Dommelen, P.; Maas, J.; de Vries, S.I. Schoolyard physical activity of 6–11 year old children assessed by GPS and accelerometry. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 97. [Google Scholar] [CrossRef]
- Andersen, H.B.; Klinker, C.D.; Toftager, M.; Pawlowski, C.S.; Schipperijn, J. Objectively measured differences in physical activity in five types of schoolyard area. Landsc. Urban Plan. 2015, 134, 83–92. [Google Scholar] [CrossRef]
- Kerr, J.; Duncan, S.; Schipperjin, J. Using Global Positioning Systems in Health Research: A Practical Approach to Data Collection and Processing. Am. J. Prev. Med. 2011, 41, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Moeslund, T.B.; Granum, E. A Survey of Computer Vision-Based Human Motion Capture. Comput. Vis. Image Underst. 2001, 81, 231–268. [Google Scholar] [CrossRef]
- Hu, W.; Tan, T.; Wang, L.; Maybank, S. A Survey on Visual Surveillance of Object Motion and Behaviors. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2004, 34, 334–352. [Google Scholar] [CrossRef]
- Luo, W.; Xing, J.; Milan, A.; Zhang, X.; Liu, W.; Zhao, X.; Kim, T.-K. Multiple Object Tracking: A Literature Review. arXiv 2014, arXiv:14097618 Cs. [Google Scholar]
- Thida, M.; Yong, Y.L.; Climent-Pérez, P.; Eng, H.; Remagnino, P. A Literature Review on Video Analytics of Crowded Scenes. In Intelligent Multimedia Surveillance: Current Trends and Research; Atrey, P.K., Kankanhalli, M.S., Cavallaro, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 17–36. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, H. Human motion tracking for rehabilitation—A survey. Biomed. Signal Process. Control 2008, 3, 1–18. [Google Scholar] [CrossRef]
- Acampora, G.; Cook, D.J.; Rashidi, P.; Vasilakos, A.V. A Survey on Ambient Intelligence in Healthcare. Proc. IEEE 2013, 101, 2470–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccardi, M. Background subtraction techniques: A review. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), The Hague, The Netherlands, 10–13 October 2004; Volume 4, pp. 3099–3104. [Google Scholar] [CrossRef]
- Barnich, O.; Droogenbroeck, M.V. ViBe: A Universal Background Subtraction Algorithm for Video Sequences. IEEE Trans. Image Process. 2011, 20, 1709–1724. [Google Scholar] [CrossRef]
- Aggarwal, J.K.; Ryoo, M.S. Human Activity Analysis: A Review. ACM Comput. Surv. 2011, 43, 16:1–16:43. [Google Scholar] [CrossRef]
- Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild. arXiv 2012, arXiv:12120402 Cs. [Google Scholar]
- Herath, S.; Harandi, M.; Porikli, F. Going deeper into action recognition: A survey. Image Vis. Comput. 2017, 60, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Two-Stream Convolutional Networks for Action Recognition in Videos. In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2014; pp. 568–576. [Google Scholar]
- Wang, X.; Gao, L.; Wang, P.; Sun, X.; Liu, X. Two-Stream 3-D convNet Fusion for Action Recognition in Videos with Arbitrary Size and Length. IEEE Trans. Multimed. 2018, 20, 634–644. [Google Scholar] [CrossRef]
- Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional Two-Stream Network Fusion for Video Action Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Park, E.; Han, X.; Berg, T.L.; Berg, A.C. Combining multiple sources of knowledge in deep CNNs for action recognition. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016. [Google Scholar] [CrossRef]
- Singh, G.; Saha, S.; Sapienza, M.; Torr, P.; Cuzzolin, F. Online Real-Time Multiple Spatiotemporal Action Localisation and Prediction. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Wang, Z.; Qiao, Y.; Wang, H. Real-Time Action Recognition with Deeply Transferred Motion Vector CNNs. IEEE Trans. Image Process. 2018, 27, 2326–2339. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Taylor, G.W. Real-Time End-to-End Action Detection with Two-Stream Networks. In Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, 9–11 May 2018; pp. 31–38. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the 2016 14th European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Berlin, Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef]
- Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017; pp. 1647–1655. [Google Scholar] [CrossRef]
- Li, Z.; Gavrilyuk, K.; Gavves, E.; Jain, M.; Snoek, C.G.M. VideoLSTM convolves, attends and flows for action recognition. Comput. Vis. Image Underst. 2018, 166, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Snoek, C.G.M. Dance with Flow: Two-in-One Stream Action Detection. arXiv 2019, arXiv:190400696 Cs. [Google Scholar]
- Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv 2015, arXiv:151000149 Cs. [Google Scholar]
- Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep neural network. In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 July 2016; pp. 243–254. [Google Scholar] [CrossRef]
- Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory. In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 July 2016; pp. 27–39. [Google Scholar] [CrossRef]
- Zhu, Z.; Sun, H.; Lin, Y.; Dai, G.; Xia, L.; Han, S.; Wang, Y.; Yang, H.A. Configurable Multi-Precision CNN Computing Framework Based on Single Bit RRAM. In Proceedings of the 2019 56th Annual Design Automation Conference (DAC), Las-Vegas, NV, USA, 2–6 June 2019; p. 56. [Google Scholar] [CrossRef]
- Jishnu, P. MV-Tractus: A simple and fast tool to extract motion vectors from H264 encoded video streams. Zenodo 2018. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, H.; Zhang, B. Learning correlations for human action recognition in videos. Multimed. Tools Appl. 2017, 76, 18891–18913. [Google Scholar] [CrossRef]
Method | Positive Features | Negative Features | Participant Burden * | Cost ** |
---|---|---|---|---|
Indirect measures | ||||
PA diary, log | Inexpensive | Sensitive to cognitive development; inaccuracy; social desirability bias; recall bias. | ++ | -- |
Interviews, questionnaires | + | -- | ||
Direct measures | ||||
Observation | Potential to capture a wide variety of PA expressions and related contextual factors | Subjective (limits of perception and individual interpretation); potentially reactive | -- | -/+ depending on scale |
Doubly labelled water | Accurate measure of EE | Does not directly reflect PA or activity types; very low sampling rate | ++ | +++ |
Heart-rate monitor | Reflects well aerobic activity | Only captures PA from aerobic activity; requires thorough calibration for each subject | + | |
Pedometer | Relatively inexpensive for a wearable sensor | Cannot accurately detect intensity of PA or capture PA microexpressions. | - | - |
Wearable accelerometer | Widely field-tested and validated, machine learning enables PA type and specific activity recognition | Differences between devices; no consensus on acceleration signal processing and aggregation to standard PA indicators | + | |
Smartphone sensors | Rich sensor data; possibility to ask questions after detecting bouts of PA | Limited battery life; often not attached to body; differences between devices | -/+ depending on use | |
Proposed computer vision approach | Unobtrusive; context specific; long measurement period | High initial investment; not yet validated | --- | ++ increasing returns |
Raw (30 Hz) | 15 Hz | 10 Hz | 6 Hz | 5 Hz | 3 Hz | 2 Hz | 1 Hz | |
---|---|---|---|---|---|---|---|---|
First 2 min | 0.331 | 0.449 | 0.469 | 0.559 | 0.564 | 0.656 | 0.673 | 0.669 |
min 3–4 | 0.138 | 0.210 | 0.234 | 0.309 | 0.343 | 0.476 | 0.541 | 0.574 |
min 5–6 | 0.248 | 0.374 | 0.400 | 0.464 | 0.492 | 0.575 | 0.610 | 0.641 |
min 7–8 | 0.338 | 0.450 | 0.481 | 0.529 | 0.552 | 0.607 | 0.641 | 0.630 |
min 9–10 | 0.316 | 0.422 | 0.453 | 0.529 | 0.556 | 0.657 | 0.696 | 0.695 |
Whole clip (10.4 min) | 0.279 | 0.387 | 0.416 | 0.486 | 0.511 | 0.602 | 0.640 | 0.646 |
Independent play (min 1.9–4.7) | 0.140 | 0.217 | 0.240 | 0.312 | 0.350 | 0.477 | 0.532 | 0.574 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hõrak, H. Computer Vision-Based Unobtrusive Physical Activity Monitoring in School by Room-Level Physical Activity Estimation: A Method Proposition. Information 2019, 10, 269. https://doi.org/10.3390/info10090269
Hõrak H. Computer Vision-Based Unobtrusive Physical Activity Monitoring in School by Room-Level Physical Activity Estimation: A Method Proposition. Information. 2019; 10(9):269. https://doi.org/10.3390/info10090269
Chicago/Turabian StyleHõrak, Hans. 2019. "Computer Vision-Based Unobtrusive Physical Activity Monitoring in School by Room-Level Physical Activity Estimation: A Method Proposition" Information 10, no. 9: 269. https://doi.org/10.3390/info10090269
APA StyleHõrak, H. (2019). Computer Vision-Based Unobtrusive Physical Activity Monitoring in School by Room-Level Physical Activity Estimation: A Method Proposition. Information, 10(9), 269. https://doi.org/10.3390/info10090269