Performance Investigation of Peak Shrinking and Interpolating the PAPR Reduction Technique for LTE-Advance and 5G Signals
Abstract
:1. Introduction
1.1. Fast Fourier Transform; Origin of High Peak to Average Power Ratio or Crest Factor
1.2. Previous Peak to Average Power Ratio or Crest Factor Reduction Works
2. The Peak Shrinking and Interpolation (PSI) Technique
2.1. Detection of a Peak and Its Surrounding
Algorithm 1 Defining the borders of a peak (surrounding borders) |
|
2.2. Peak Shrinking Process
2.3. Matching/Smoothing Algorithm in PSI Technique
Algorithm 2 Matching/smoothing algorithm (performed after the shrinking process) |
|
3. Performance Analysis of the PSI Technique
3.1. Analysing the Error Vector Magnitude (EVM)
3.2. PAPR Reduction Performance; Complementary Cumulative Discrete Function (CCDF), and Time Domain Signal Power Peak Reduction
3.3. Computational Complexity Comparison
3.4. Signal Spectrum Leakage
3.5. Testing PSI Performance with WCDMA, DVB S2, 4G, and 5G Signals
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buritica, A. From Waveforms to MIMO: 5 Things for 5G New Radio; National Instruments: Austin, TX, USA, 2019. [Google Scholar]
- 5G: New Wave in the IoT Regime. Available online: https://www.microwavejournal.com/articles/ 33187-g-new-wave-in-the-iot-regime (accessed on 21 December 2019).
- Opportunities for High Frequency Materials in 5G and the IoT. Microw. J. 2019, 60, 88–96.
- Baig, I. A Precoding-Based Multicarrier Non-Orthogonal Multiple Access Scheme for 5G Cellular Networks. IEEE Access 2017, 5, 19233–19238. [Google Scholar] [CrossRef]
- Rajasekaran, A.S.; Vameghestahbanati, M.; Farsi, M.; Yanikomeroglu, H.; Saeedi, H. Resource Allocation-Based PAPR Analysis in Uplink SCMA-OFDM Systems. IEEE Access 2019, 7, 162803–162817. [Google Scholar] [CrossRef]
- Carslaw, H.S.H.S. Introduction to the Theory of Fourier’s Series and Integrals; Macmillan Publishers Ltd: London, UK, 1921; pp. 1874–1954. [Google Scholar]
- Levy, M.M. Fourier transform analysis. J. Br. Inst. Radio Eng. 1946, 6, 228–246. [Google Scholar] [CrossRef]
- Mohammady, S.; Sulaiman, N.; Sidek, R.M.; Varahram, P.; Hamidon, M.N. FPGA Implementation of Inverse Fast Fourier Transform in Orthogonal Frequency Division Multiplexing Systems. In Fourier Transform; Salih, S.M., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 6. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.R.; Khan, A.; Usman, M.A.; Shin, S.Y. Joint non-orthogonal multiple access (NOMA) Walsh-Hadamard transform: Enhancing the receiver performance. China Commun. 2018, 15, 160–177. [Google Scholar] [CrossRef]
- Prasad, R. OFDM for Wireless Communications Systems; Artech House Universal Personal Communications Series; Artech House: London, UK, 2004. [Google Scholar]
- Rahmatallah, Y.; Mohan, S. Peak-To-Average Power Ratio Reduction in OFDM Systems: A Survey And Taxonomy. IEEE Commun. Surv. Tutor. 2013, 15, 1567–1592. [Google Scholar] [CrossRef]
- May, T.; Rohling, H. Reducing the peak-to-average power ratio in OFDM radio transmission systems. In Proceedings of the VTC ’98, 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), Ottawa, ON, Canada, 21–21 May 1998; Volume 3, pp. 2474–2478. [Google Scholar] [CrossRef]
- Texas Instruments. GC5328 Datasheet, Low-Power Wideband Digital Predistortion Transmit Processor; Texas Instruments: Dallas, TX, USA, 2009; Available online: http://www.ti.com/lit/ds/slws218a/slws218a.pdf (accessed on 21 December 2019).
- Chen, L.; Chen, W.; Liu, Y.; Yang, C.; Feng, Z. An Efficient Directional Modulation Transmitter With Novel Crest Factor Reduction Technique. IEEE Microw. Wirel. Compon. Lett. 2019, 1–3. [Google Scholar] [CrossRef]
- Jones, A.E.; Wilkinson, T.A.; Barton, S.K. Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes. Electron. Lett. 1994, 30, 2098–2099. [Google Scholar] [CrossRef]
- Kwon, J.W.; Park, S.K.; Kim, Y. Peak-to-average power ratio reduction by the partial shift sequence method for space-frequency block coded OFDM systems. In Proceedings of the 2009 IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 6 November 2009; pp. 890–893. [Google Scholar] [CrossRef]
- Varahram, P.; Ali, B. Peak to Average Power Ratio Reduction Based on Optimum Phase Sequence in Orthogonal Frequency Division Multiplexing Systems. In Advanced Transmission Techniques in WiMAX; Hincapie, R., Sierra, J.E., Eds.; IntechOpen: London, UK, 2012; pp. 217–238. [Google Scholar]
- Varahram, P.; Al-Azzo, W.F.; Ali, B.M. A low complexity partial transmit sequence scheme by use of dummy signals for PAPR reduction in OFDM systems. IEEE Trans. Consum. Electron. 2010, 56, 2416–2420. [Google Scholar] [CrossRef]
- Varahram, P.; Ali, B.M.; Al-Azzo, W. Low complexity ADRG-PTS scheme for PAPR reduction in OFDM systems. In Proceedings of the 13th International Conference on Advanced Communication Technology (ICACT2011), Gangwon-Do, South Korea, 13–16 February 2011; pp. 331–334. [Google Scholar]
- Mohammady, S.; Sidek, R.M.; Varahram, P.; Hamidon, M.N.; Sulaiman, N. A new DSI-SLM method for PAPR reduction in OFDM systems. In Proceedings of the 2011 IEEE International Conference on Consumer Electronics (ICCE), Berlin, Germany, 6–8 Spetember 2011; pp. 369–370. [Google Scholar] [CrossRef]
- Mohammady, S.; Sulaiman, N.; Sidek, R.; Varahram, P.; Hamidon, M.N. FPGA Implementation of Inverse Fast Fourier Transform in Orthogonal Frequency Division Multiplexing Systems; Intech Open Limited: London, UK, 2012. [Google Scholar]
- Razavi, S.; Sulaiman, N.; Sidek, R.M.; Mohammady, S.; Varahram, P. Analysis on the parameters of selected mapping without side information on PAPR performances. In Proceedings of the 2014 IEEE 5th Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 4–5 August 2014; pp. 43–46. [Google Scholar] [CrossRef]
- Razavi, S.; Sulaiman, N.; Mohammady, S.; Sidek, R.M.; Varahram, P. Efficiency analysis of PAPR reduction schemes. In Proceedings of the 2012 International Symposium on Telecommunication Technologies, Kuala Lumpur, Malaysia, 26–28 November 2012; pp. 279–284. [Google Scholar] [CrossRef]
- Mohammady, S.; Farrell, R.; Malone, D.; Dooley, J. Peak Shrinking and Interpolating Technique for reducing Peak to Average Power Ratio. Wirel. Days (WD) 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kotzer, I.; Har-Nevo, S.; Sodin, S.; Litsyn, S. An Analytical Approach to the Calculation of EVM in Clipped Multi-Carrier Signals. IEEE Trans. Commun. 2012, 60, 1371–1380. [Google Scholar] [CrossRef]
- Muntean, V.H.; Otesteanu, M. WiMAX versus LTE—An overview of technical aspects for next generation networks technologies. In Proceedings of the 2010 9th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 11–12 November 2010; pp. 225–228. [Google Scholar] [CrossRef]
- Liu, Q.; Baxley, R.J.; Ma, X.; Zhou, G.T. Error vector magnitude optimization for OFDM systems with a deterministic peak-to-average power ratio constraint. In Proceedings of the 2008 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, 19–21 March 2008; pp. 101–104. [Google Scholar] [CrossRef]
- ETSI Standards. LTE Evolved Universal Terrestrial Radio Access (E-UTRA) Base Station (BS) Radio Transmission and Reception (3GPP TS 36.104 Version 13.7.0 Release 13). 2017. Available online: https://www.etsi.org/deliver/etsi_tr/101400_101499/101477/01.01.01_60/tr_101477v010101p.pdf (accessed on 21 December 2019).
- LTE Tool Box in Matlab. The Mathworks, USA. Available online: https://uk.mathworks.com/products/lte.html?requestedDomain= (accessed on 21 December 2019).
- Rémy, J.; Letamendia, C. LTE Standards; Iste Series; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Tsai, W.; Liou, C.; Peng, Z.; Mao, S. Wide-Bandwidth and High-Linearity Envelope- Tracking Front-End Module for LTE-A Carrier Aggregation Applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 4657–4668. [Google Scholar] [CrossRef]
- Lu, F.; Xu, M.; Cheng, L.; Wang, J.; Shen, S.; Zhang, J.; Chang, G. Sub-Band Pre-Distortion for PAPR Reduction in Spectral Efficient 5G Mobile Fronthaul. IEEE Photonics Technol. Lett. 2017, 29, 122–125. [Google Scholar] [CrossRef]
- 5G. 5G vs 4G: No Contest. Available online: https://5g.co.uk/guides/4g-versus-5g-what-will-the-next-generation-bring/ (accessed on 21 December 2019).
- IEEE Standards, USA. IEEE 802.16e WiMAX OFDMA Signal Measurements and Troubleshootin; Agilent Application Note 1578; IEEE Standards: Piscataway, NJ, USA, 2011. [Google Scholar]
- Wang, Y.; Luo, Z. Optimized Iterative Clipping and Filtering for PAPR Reduction of OFDM Signals. IEEE Trans. Commun. 2011, 59, 33–37. [Google Scholar] [CrossRef]
- Bauml, R.W.; Fischer, R.F.H.; Huber, J.B. Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electron. Lett. 1996, 32, 2056–2057. [Google Scholar] [CrossRef] [Green Version]
- Mohammady, S.; Varahram, P.; Sidek, R.; Hamidon, M.N.; Sulaiman, N. FPGA Implementation of the Complex Division in Digital Predistortion Linearizer. Aust. J. Basic Appl. Sci. (AJBAS) 2010, 5028–5037. [Google Scholar] [CrossRef]
- Muller, S.H.; Huber, J.B. OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. Electron. Lett. 1997, 33, 368–369. [Google Scholar] [CrossRef] [Green Version]
- Muller, S.H.; Huber, J.B. A novel peak power reduction scheme for OFDM. In Proceedings of the 8th International Symposium on Personal, Indoor and Mobile Radio Communications—PIMRC ’97, Helsinki, Finland, 1–4 September 1997; Volume 3, pp. 1090–1094. [Google Scholar] [CrossRef]
- Jawhar, Y.A.; Audah, L.; Taher, M.A.; Ramli, K.N.; Shah, N.S.M.; Musa, M.; Ahmed, M.S. A Review of Partial Transmit Sequence for PAPR Reduction in the OFDM Systems. IEEE Access 2019, 7, 18021–18041. [Google Scholar] [CrossRef]
- Mohammady, S.; Sulaiman, N.; Varahram, P.; Sidek, R.M.; Hamidon, M.N. Performance investigation between DSI-SLM and DSI-PTS schemes in OFDM signals. In Proceedings of the 2012 International Symposium on Telecommunication Technologies, Sarajevo, Bosnia Herzegovina, 25–27 October 2012; pp. 210–214. [Google Scholar] [CrossRef]
- Rohde Schwarz 5G Poster: Be ahead in 5G. Demystifying 5G NR. Available online: https://www.mobilewirelesstesting.com/wp-content/uploads/2018/05/5GNR-IO_Rohde-Schwarz_April-2018-Blasts.pdf (accessed on 21 December 2019).
- Lashkarian, N.; Tarn, H.; Dick, C. Crest Factor Reduction in Multi-carrier WCDMA Transmitters. In Proceedings of the 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, Germany, 11–14 September 2005; Volume 1, pp. 321–325. [Google Scholar] [CrossRef]
- Mohammady, S.; Varahram, P. Introductory Chapter: Multiplexing History—How It Applies to Current Technologies. In Multiplexing; Mohammady, S., Ed.; IntechOpen: Rijeka, Croatia, 2019; Chapter 1. [Google Scholar] [CrossRef] [Green Version]
- Digilent ZedBoard Zynq®-7000 ARM/FPGA SoC Development Board. Available online: https://www.xilinx.com/products/boards-and-kits/1-elhabt.html.html (accessed on 21 December 2019).
- Digilentinc Zedboard Schematic. Available online: www.Zedboard.org (accessed on 21 December 2019).
- AD-FMCOMMS2-EBZ User Guide. Available online: https://wiki.analog.com/resources/eval/ user-guides/ad-fmcomms2-ebz (accessed on 21 December 2019).
- Analog Devices AD9361 Integrated Radio Frequency (RF) Agile Transceiver. Available online: https://www.analog.com/en/products/ad9361.html (accessed on 21 December 2019).
- GaN-SiC Pallet Amplifier RTP26010-N1. Available online: https://dtsheet.com/doc/841692/rfhic-rtp26010-n1 (accessed on 21 December 2019).
- Doherty, W.H. A New High Efficiency Power Amplifier for Modulated Waves. Proc. Inst. Radio Eng. 1936, 24, 1163–1182. [Google Scholar] [CrossRef]
- Mohammady, S.; Sidek, R.M.; Varahram, P.; Hamidon, M.N.; Sulaiman, N. A low complexity selected mapping scheme for peak to average power ratio reduction with digital predistortion in OFDM systems. Int. J. Commun. Syst. 2013, 26, 481–494. [Google Scholar] [CrossRef]
- Cheang, C.; Mak, P.; Martins, R.P. A Hardware-Efficient Feedback Polynomial Topology for DPD Linearization of Power Amplifiers: Theory and FPGA Validation. IEEE Trans. Circ. Syst. I Regul. Pap. 2018, 65, 2889–2902. [Google Scholar] [CrossRef]
- Prata, A.; Santos, J.C.; Oliveira, A.S.R.; Borges Carvalho, N. Agile All-Digital DPD Feedback Loop. IEEE Trans. Microw. Theory Tech. 2017, 65, 2476–2484. [Google Scholar] [CrossRef]
- Byrne, D.; Farrell, R.; Madhuwantha, S.; Leeser, M.; Dooley, J. Digital Pre-distortion Implemented Using FPGA. In Proceedings of the 2018 28th International Conference on Field Programmable Logic and Applications (FPL), Dublin, Ireland, 27–31 August 2018; pp. 453–4531. [Google Scholar] [CrossRef]
Technique | Data Rate | Distortion-less | Transmitter | Receiver | Side Info. | PAPR |
---|---|---|---|---|---|---|
(CFR) | Loss | Complexity | Complexity | Bits | Reduction | |
Clipping based | No | No | Low | Low | No | High |
Coding based | Yes | Yes | High | High | No | Medium |
PTS based | Yes | Yes | High | Low | Yes | High |
SLM based | No | Yes | High | Low | Yes | High |
DSI based | Yes | Yes | Low | Low | No | Weak |
Length of the IFFT (K) | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 |
---|---|---|---|---|---|---|
512 | 0.1652% | 0.1652% | 0.2035% | 0.2405% | 0.2192% | 0.1857% |
1024 | 0.0756% | 0.0756% | 0.0932% | 0.1143% | 0.1053% | 0.0840% |
2048 | 0.0345% | 0.0345% | 0.0435% | 0.0542% | 0.0486% | 0.0381% |
4096 | 0.0142% | 0.0169% | 0.0189% | 0.0237% | 0.0162% | 0.0156% |
8192 | 0.0064% | 0.0083% | 0.0077% | 0.0105% | 0.0079% | 0.0070% |
Length of IFFT (K) | Original Signal without CFR | After PSI | Amount of Reduction (dB) |
---|---|---|---|
1024 | 12 dB | dB | dB |
2048 | dB | dB | dB |
4096 | dB | dB | dB |
8192 | dB | dB | dB |
Type of CFR Technique | Number of Required Multiplications | Number of Required Bits |
---|---|---|
Length of the IFFT () | ||
Clipping and Filtering (CF) | ≥ | ≥ |
Two Step Peak Clipping (TPC) [14] | ≥ | ≥ |
DSI-SLM technique [20] | 47810 | 1024 |
DSI-PTS technique [41] | 67,112,615 | 1024 |
Conventional SLM(C-SLM) technique [36] | 1024 | |
Peak Shrinking and Interpolation (PSI) | 1440 | 80 |
LTE | Number of | Signal | LTE | Spectrum | Spectrum |
---|---|---|---|---|---|
Windowing | Resource Blocks | Bandwidth | IFFT/FFT | Leakage | Leakage |
Size | (NRB) | (MHz) | Size | (No Re-Sampling) | (Re-Sampling Factor = 2) |
4 | 6 | 1.4 | 128 | 1.16 | 0.94 |
6 | 15 | 3 | 256 | 0.22 | 0.08 |
4 | 25 | 5 | 512 | 0 | 0 |
6 | 50 | 10 | 1024 | 4.83 | 4.14 |
8 | 75 | 15 | 2048 | 3.66 | 9.29 |
8 | 100 | 20 | 2048 | 6.98 | 7.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammady, S.; Farrell, R.; Malone, D.; Dooley, J. Performance Investigation of Peak Shrinking and Interpolating the PAPR Reduction Technique for LTE-Advance and 5G Signals. Information 2020, 11, 20. https://doi.org/10.3390/info11010020
Mohammady S, Farrell R, Malone D, Dooley J. Performance Investigation of Peak Shrinking and Interpolating the PAPR Reduction Technique for LTE-Advance and 5G Signals. Information. 2020; 11(1):20. https://doi.org/10.3390/info11010020
Chicago/Turabian StyleMohammady, Somayeh, Ronan Farrell, David Malone, and John Dooley. 2020. "Performance Investigation of Peak Shrinking and Interpolating the PAPR Reduction Technique for LTE-Advance and 5G Signals" Information 11, no. 1: 20. https://doi.org/10.3390/info11010020
APA StyleMohammady, S., Farrell, R., Malone, D., & Dooley, J. (2020). Performance Investigation of Peak Shrinking and Interpolating the PAPR Reduction Technique for LTE-Advance and 5G Signals. Information, 11(1), 20. https://doi.org/10.3390/info11010020