Role of Personalization in Continuous Use Intention of Mobile News Apps in India: Extending the UTAUT2 Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mobile Apps
2.2. Personalization (PER)
2.3. Mobile App Personalization
2.4. News Apps Personalization
2.5. Personalization and Continuous Use Intention
2.6. Unified Theory of Acceptance and Use of Technology 2 (UTAUT2)
2.6.1. Performance Expectancy (PE)
2.6.2. Effort Expectancy (EE)
2.6.3. Social Influence (SI)
2.6.4. Facilitating Conditions (FC)
2.6.5. Hedonic Motivation (HM)
2.6.6. Habit (HA)
3. Methodology
3.1. Sampling and Data Collection
3.2. Research Instrument
3.3. Analytical Methods
4. Data Analysis and Results
4.1. Measurement Model
4.2. Structural Model
4.3. Moderating Effect
5. Discussion, Implication, and Limitations, and Future Research Direction
5.1. Discussion
5.2. Implications
5.3. Limitations and Future Research Direction
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Malaquias, R.F.; Hwang, Y. Mobile banking use: A comparative study with Brazilian and US participants. Int. J. Inf. Manag. 2019, 44, 132–140. [Google Scholar] [CrossRef]
- Baabdullah, A.M.; Alalwan, A.A.; Rana, N.P.; Patil, P.; Dwivedi, Y.K. An integrated model for m-banking adoption in Saudi Arabia. Int. J. Bank Mark. 2019, 37, 452–478. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, Y.K.; Shareef, M.A.; Simintiras, A.C.; Lal, B.; Weerakkody, V. A generalised adoption model or services: A cross-country comparison of mobile health (m-health). Gov. Inf. Q. 2016, 33, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Statista. Annual Number of Global Mobile App Downloads 2017–2022, May ed.; Statista: Hamburg, Germany, 2018. [Google Scholar]
- App Annie, R. The State of Mobile in 2019 Technical Report; App Annie: San Francisco, CA, USA, 2019. [Google Scholar]
- Annie, A. 2017 Retrospective: A Monumental Year for the App Economy, 2017 ed.; App Annie: San Francisco, CA, USA, 2017. [Google Scholar]
- Constantinides, M. Apps with habits: Adaptive interfaces for news apps. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 191–194. [Google Scholar]
- Kazai, G.; Yusof, I.; Clarke, D. Personalised news and blog recommendations based on user location, Facebook and Twitter user profiling. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Seoul, Korea, 18–23 April 2015; pp. 1129–1132. [Google Scholar]
- Wu, J.; Sun, H.; Tan, Y. Social media research: A review. J. Syst. Sci. Syst. Eng. 2013, 22, 257–282. [Google Scholar] [CrossRef]
- Frasincar, F.; Borsje, J.; Levering, L. A semantic web-based approach for building personalized news services. Int. J. E-Bus. Res. IJEBR 2009, 5, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhang, Y. Research patterns and trends of Recommendation System in China using co-word analysis. Inf. Process. Manag. 2015, 51, 329–339. [Google Scholar] [CrossRef]
- Lin, L.C.-S. Mobile apps and news: A Taiwanese case of curation. J. Int. Commun. 2018, 24, 76–95. [Google Scholar] [CrossRef]
- Ye, Q.; Luo, Y.; Chen, G.; Guo, X.; Wei, Q.; Tan, S. Users Intention for Continuous Usage of Mobile News Apps: The Roles of Quality, Switching Costs, and Personalization. J. Syst. Sci. Syst. Eng. 2019, 28, 91–109. [Google Scholar] [CrossRef]
- Islam, M.M. Exploring influencing factors towards intention and use of mobile internet for youth consumers in Bangladesh. Univers. J. Manag. 2017, 5, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-W.; Namkung, Y. The role of personalization on continuance intention in food service mobile apps: A privacy calculus perspective. Int. J. Contemp. Hosp. Manag. 2019, 31, 734–752. [Google Scholar] [CrossRef]
- Wong, C.-H.; Wei-Han Tan, G.; Loke, S.-P.; Ooi, K.-B. Mobile TV: A new form of entertainment? Ind. Manag. Data Syst. 2014, 114, 1050–1067. [Google Scholar] [CrossRef]
- Lee, S.W.; Sung, H.J.; Jeon, H.M. Determinants of Continuous Intention on Food Delivery Apps: Extending UTAUT2 with Information Quality. Sustainability 2019, 11, 3141. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Srivastava, S.; Sinha, N. Consumer preference and satisfaction of M-wallets: A study on North Indian consumers. Int. J. Bank Mark. 2017, 35, 944–965. [Google Scholar] [CrossRef]
- Tak, P.; Panwar, S. Using UTAUT 2 model to predict mobile app based shopping: Evidences from India. J. Indian Bus. Res. 2017, 9, 248–264. [Google Scholar] [CrossRef]
- Schmitz Weiss, A. Exploring news apps and location-based services on the smartphone. J. Mass Commun. Q. 2013, 90, 435–456. [Google Scholar] [CrossRef]
- Elangovan, N.; Gupta, H. Impact of smartphone news apps on print media–A twin TAM framework. J. Bus. Manag. 2015, 17, 1–9. [Google Scholar]
- Wang, W.-C. Understanding user experience of news applications by Taxonomy of Experience (ToE). Behav. Inf. Technol. 2017, 36, 1137–1147. [Google Scholar] [CrossRef]
- Alalwan, A.A. Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. Int. J. Inf. Manag. 2020, 50, 28–44. [Google Scholar] [CrossRef]
- Newman, C.L.; Wachter, K.; White, A. Bricks or clicks? Understanding consumer usage of retail mobile apps. J. Serv. Mark. 2018, 32, 211–222. [Google Scholar] [CrossRef]
- Lee, S. Enhancing customers’ continued mobile app use in the service industry. J. Serv. Mark. 2018, 32, 680–691. [Google Scholar] [CrossRef]
- Yang, M.; Shao, Z.; Liu, Q.; Liu, C. Understanding the quality factors that influence the continuance intention of students toward participation in MOOCs. Educ. Technol. Res. Dev. 2017, 65, 1195–1214. [Google Scholar] [CrossRef]
- Taylor, D.G.; Voelker, T.A.; Pentina, I. Mobile application Adoption by Young Adults: A Social Network Perspective. Int. J. Mob. Mark. 2011, 6, 60–70. [Google Scholar]
- Wang, H.-Y.; Liao, C.; Yang, L.-H. What Affects Mobile Application Use? The Roles of Consumption Values. Int. J. Mark. Stud. 2013, 5, 11. [Google Scholar] [CrossRef]
- Johnson, R. Apps culture reinventing mobile internet. Electron. Eng. Times 2010, 1588, 24–30. [Google Scholar]
- Van Damme, K.; Courtois, C.; Verbrugge, K.; De Marez, L. What’s APPening to news? A mixed-method audience-centred study on mobile news consumption. Mobile Media Commun. 2015, 3, 196–213. [Google Scholar] [CrossRef] [Green Version]
- Chopdar, P.K.; Korfiatis, N.; Sivakumar, V.; Lytras, M.D. Mobile shopping apps adoption and perceived risks: A cross-country perspective utilizing the Unified Theory of Acceptance and Use of Technology. Comput. Hum. Behav. 2018, 86, 109–128. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, A.L.; Smith, M.D. Prospects for Personalization on the Internet. J. Interact. Mark. 2009, 23, 130–137. [Google Scholar] [CrossRef]
- Tuzhilin, A. Personalization: The state of the art and future directions. Bus. Comput. 2009, 3, 3–43. [Google Scholar]
- Sunikka, A.; Bragge, J. Applying text-mining to personalization and customization research literature–Who, what and where? Expert Syst. Appl. 2012, 39, 10049–10058. [Google Scholar] [CrossRef]
- Nyheim, P.; Xu, S.; Zhang, L.; Mattila, A.S. Predictors of avoidance towards personalization of restaurant smartphone advertising: A study from the Millennials’ perspective. J. Hosp. Tour. Technol. 2015, 6, 145–159. [Google Scholar] [CrossRef]
- Thurman, N.; Schifferes, S. The future of personalization at news websites: Lessons from a longitudinal study. J. Stud. 2012, 13, 775–790. [Google Scholar] [CrossRef]
- Halimi, A.; Chavosh, A.; Choshalyc, S. The influence of relationship marketing tactics on customer’s loyalty in B2C relationship—The role of communication and personalization. Eur. J. Econ. Financ. Adm. Sci. 2011, 31, 49–56. [Google Scholar]
- Erevelles, S.; Fukawa, N.; Swayne, L. Big Data consumer analytics and the transformation of marketing. J. Bus. Res. 2016, 69, 897–904. [Google Scholar] [CrossRef]
- Ho, S.Y.; Bodoff, D. The effects of Web personalization on user attitude and behavior: An integration of the elaboration likelihood model and consumer search theory. MIS Q. 2014, 38, 497–520. [Google Scholar] [CrossRef]
- Bodoff, D.; Ho, S.Y. Effectiveness of Website Personalization: Does the Presence of Personalized Recommendations Cannibalize Sampling of Other Items? Int. J. Electron. Commer. 2015, 20, 208–235. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, L. Timing of web personalization in mobile shopping: A perspective from Uses and Gratifications Theory. Comput. Hum. Behav. 2018, 88, 103–113. [Google Scholar] [CrossRef]
- Dabholkar, P.A.; Sheng, X. Consumer participation in using online recommendation agents: Effects on satisfaction, trust, and purchase intentions. Serv. Ind. J. 2012, 32, 1433–1449. [Google Scholar] [CrossRef]
- Bleier, A.; Eisenbeiss, M. The importance of trust for personalized online advertising. J. Retail. 2015, 91, 390–409. [Google Scholar] [CrossRef]
- Choi, J.; Lee, H.J.; Sajjad, F.; Lee, H. The influence of national culture on the attitude towards mobile recommender systems. Technol. Forecast. Soc. Chang. 2014, 86, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, E.; Mahr, D.; Grewal, D.; de Ruyter, K.; Wetzels, M. Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. J. Retail. 2015, 91, 34–49. [Google Scholar] [CrossRef]
- Li, Y.-M.; Wu, C.-T.; Lai, C.-Y. A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship. Decis. Support Syst. 2013, 55, 740–752. [Google Scholar] [CrossRef]
- Albashrawi, M.; Motiwalla, L. Privacy and personalization in continued usage intention of mobile banking: An integrative perspective. Inf. Syst. Front. 2019, 21, 1031–1043. [Google Scholar] [CrossRef]
- Che, T.; Peng, Z.; Lim, K.H.; Hua, Z. Antecedents of consumers’ intention to revisit an online group-buying website: A transaction cost perspective. Inf. Manag. 2015, 52, 588–598. [Google Scholar] [CrossRef]
- Krishnaraju, V.; Mathew, S.K.; Sugumaran, V. Web personalization for user acceptance of technology: An empirical investigation of E-government services. Inf. Syst. Front. 2016, 18, 579–595. [Google Scholar] [CrossRef]
- Tam, K.Y.; Ho, S.Y. Understanding the impact of web personalization on user information processing and decision outcomes. MIS Q. 2006, 30, 865–890. [Google Scholar] [CrossRef]
- Hsiao, C.-H.; Chang, J.-J.; Tang, K.-Y. Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telemat. Inform. 2016, 33, 342–355. [Google Scholar] [CrossRef]
- Alnawas, I.; Aburub, F. The effect of benefits generated from interacting with branded mobile apps on consumer satisfaction and purchase intentions. J. Retail. Consum. Serv. 2016, 31, 313–322. [Google Scholar] [CrossRef]
- Haught, M.J.; Wei, R.; Karlis, J.V. Apps, apps, and more apps: Motivations and user behaviours. Int. J. Mob. Comput. Multimed. Commun. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Constantinides, M.; Dowell, J.; Johnson, D.; Malacria, S. Exploring mobile news reading interactions for news app personalisation. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, Paphos, Cyprus, 2–6 September 2019; pp. 457–462. [Google Scholar]
- Franke, N.; Keinz, P.; Steger, C.J. Testing the value of customization: When do customers really prefer products tailored to their preferences? J. Mark. 2009, 73, 103–121. [Google Scholar] [CrossRef]
- Rogers, E.M. The Diffusion of Innovation, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Kim, J.; Gambino, A. Do we trust the crowd or information system? Effects of personalization and bandwagon cues on users’ attitudes and behavioral intentions toward a restaurant recommendation website. Comput. Hum. Behav. 2016, 65, 369–379. [Google Scholar] [CrossRef]
- Park, J.-H. The effects of personalization on user continuance in social networking sites. Inf. Process. Manag. 2014, 50, 462–475. [Google Scholar] [CrossRef]
- Kalyanaraman, S.; Sundar, S.S. The psychological appeal of personalized content in web portals: Does customization affect attitudes and behavior? J. Commun. 2006, 56, 110–132. [Google Scholar] [CrossRef]
- Kim, N.Y.; Sundar, S.S. Personal relevance versus contextual relevance. J. Media Psychol. 2012, 24, 89–101. [Google Scholar] [CrossRef]
- Ha, H.-Y.; Muthaly, S.K.; Akamavi, R.K. Alternative explanations of online repurchasing behavioral intentions: A comparison study of Korean and UK young customers. Eur. J. Mark. 2010, 44, 874–904. [Google Scholar] [CrossRef]
- Wessel, M.; Thies, F. The Effects of Personalization on Purchase Intentions for Online News: An Experimental Study of Different Personalization Increments. In Proceedings of the ECIS 2015, Münster, Germany, 26–29 May 2015. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1975. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Roy, S. App Adoption and Switching Behavior: Applying the Extended Tam in Smartphone App Usage. J. Inf. Syst. Technol. Manag. 2017, 14, 239–261. [Google Scholar] [CrossRef]
- Chen, C.-C.; Tsai, J.-L. Determinants of behavioral intention to use the Personalized Location-based Mobile Tourism Application: An empirical study by integrating TAM with ISSM. Future Gener. Comput. Syst. 2019, 96, 628–638. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Park, J.-H.; Chung, N.; Blakeney, A. A unified perspective on the factors influencing usage intention toward mobile financial services. J. Bus. Res. 2012, 65, 1590–1599. [Google Scholar] [CrossRef]
- Lu, H.-P.; Yu-Jen Su, P. Factors affecting purchase intention on mobile shopping web sites. Internet Res. 2009, 19, 442–458. [Google Scholar] [CrossRef]
- Morosan, C.; DeFranco, A. It’s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. Int. J. Hosp. Manag. 2016, 53, 17–29. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.Z.; Hoque, M.R.; Hu, W.; Barua, Z. Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. Int. J. Inf. Manag. 2020, 50, 128–143. [Google Scholar] [CrossRef]
- Kang, S. Factors influencing intention of mobile application use. Int. J. Mob. Commun. 2014, 12, 360–379. [Google Scholar] [CrossRef]
- Jeon, H.-M.; Ali, F.; Lee, S.-W. Determinants of consumers’ intentions to use smartphones apps for flight ticket bookings. Serv. Ind. J. 2019, 39, 385–402. [Google Scholar] [CrossRef]
- Chen, L.; Holsapple, C.W. E-business adoption research: State of the art. J. Electron. Commer. Res. 2013, 14, 261. [Google Scholar]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Maurits, N. From Neurology to Methodology and Back: An Introduction to Clinical Neuroengineering; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Wang, M.; Cho, S.; Denton, T. The impact of personalization and compatibility with past experience on e-banking usage. Int. J. Bank Mark. 2017, 35, 45–55. [Google Scholar] [CrossRef]
- Randall, T.; Terwiesch, C.; Ulrich, K.T. Research note—User design of customized products. Mark. Sci. 2007, 26, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.A.; Venkatesh, V. Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS Q. 2005, 29, 339–426. [Google Scholar] [CrossRef]
- Hew, J.-J.; Lee, V.-H.; Ooi, K.-B.; Wei, J. What catalyses mobile apps usage intention: An empirical analysis. Ind. Manag. Data Syst. 2015, 115, 1269–1291. [Google Scholar] [CrossRef]
- Tam, C.; Santos, D.; Oliveira, T. Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Inf. Syst. Front. 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P.; Williams, M.D. Consumer adoption of mobile banking in Jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy. J. Enterp. Inf. Manag. 2016, 29, 118–139. [Google Scholar] [CrossRef]
- Verkijika, S.F. Factors influencing the adoption of mobile commerce applications in Cameroon. Telemat. Inform. 2018, 35, 1665–1674. [Google Scholar] [CrossRef]
- Khalilzadeh, J.; Ozturk, A.B.; Bilgihan, A. Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Comput. Hum. Behav. 2017, 70, 460–474. [Google Scholar] [CrossRef]
- Okumus, B.; Ali, F.; Bilgihan, A.; Ozturk, A.B. Psychological factors influencing customers’ acceptance of smartphone diet apps when ordering food at restaurants. Int. J. Hosp. Manag. 2018, 72, 67–77. [Google Scholar] [CrossRef]
- Shen, A.X.; Cheung, C.M.; Lee, M.K.; Chen, H. How social influence affects we-intention to use instant messaging: The moderating effect of usage experience. Inf. Syst. Front. 2011, 13, 157–169. [Google Scholar] [CrossRef]
- Zhou, T.; Li, H. Understanding mobile SNS continuance usage in China from the perspectives of social influence and privacy concern. Comput. Hum. Behav. 2014, 37, 283–289. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.W. Consumer trust in B2C e-Commerce and the importance of social presence: Experiments in e-Products and e-Services. Omega 2004, 32, 407–424. [Google Scholar] [CrossRef]
- Li, S.; Karahanna, E. Peer-based recommendations in online B2C e-commerce: Comparing collaborative personalization and social network-based personalization. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 733–742. [Google Scholar]
- Kim, S.C.; Yoon, D.; Han, E.K. Antecedents of mobile app usage among smartphone users. J. Mark. Commun. 2014, 22, 653–670. [Google Scholar] [CrossRef]
- Pappas, I.O.; Giannakos, M.N.; Chrissikopoulos, V. Personalized services in online shopping: Enjoyment and privacy. In Proceedings of the International Conference on Information Society (i-Society 2012), London, UK, 25–28 June 2012; pp. 168–173. [Google Scholar]
- Fiore, A.M.; Jin, H.J.; Kim, J. For fun and profit: Hedonic value from image interactivity and responses toward an online store. Psychol. Mark. 2005, 22, 669–694. [Google Scholar] [CrossRef]
- Ho, S.Y. The effects of location personalization on individuals’ intention to use mobile services. Decis. Support Syst. 2012, 53, 802–812. [Google Scholar] [CrossRef]
- Amoroso, D.; Lim, R. The mediating effects of habit on continuance intention. Int. J. Inf. Manag. 2017, 37, 693–702. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P.; Algharabat, R. Examining factors influencing Jordanian customers’ intentions and adoption of internet banking: Extending UTAUT2 with risk. J. Retail. Consum. Serv. 2018, 40, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.J. Understanding use continuance in virtual worlds: Empirical test of a research model. Inf. Manag. 2011, 48, 313–319. [Google Scholar] [CrossRef]
- Mark, K.P.; Vogel, D.R. An exploratory study of personalization and learning systems continuance. In Proceedings of the Pacific Asia Conference on Information Systems (PACIS 2009), Hyderabad, India, 10–12 July 2009. [Google Scholar]
- Zhang, J.; Wedel, M. The effectiveness of customized promotions in online and offline stores. J. Mark. Res. 2009, 46, 190–206. [Google Scholar] [CrossRef]
- Ruhl, K. Qualitative Research Practice. A Guide for Social Science Students and Researchers; JSTOR: New York, NY, USA, 2004. [Google Scholar]
- Loehlin, J.C. Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis; Psychology Press: Hove, UK, 2004. [Google Scholar]
- Xu, H.; Luo, X.R.; Carroll, J.M.; Rosson, M.B. The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decis. Support Syst. 2011, 51, 42–52. [Google Scholar] [CrossRef]
- Komiak, S.Y.; Benbasat, I. The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Q. 2006, 30, 941–960. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and intrinsic motivation to use computers in the workplace 1. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Salonen, V.; Karjaluoto, H. Web personalization: The state of the art and future avenues for research and practice. Telemat. Inform. 2016, 33, 1088–1104. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-Y.; Hitt, L.M. Measuring switching costs and the determinants of customer retention in Internet-enabled businesses: A study of the online brokerage industry. Inf. Syst. Res. 2002, 13, 255–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zheng, L.; Peng, T.-Q. Structurally embedded news consumption on mobile news applications. Inf. Process. Manag. 2017, 53, 1242–1253. [Google Scholar] [CrossRef]
- Li, H.; Sarathy, R.; Xu, H. The role of affect and cognition on online consumers’ decision to disclose personal information to unfamiliar online vendors. Decis. Support Syst. 2011, 51, 434–445. [Google Scholar] [CrossRef]
- Pappas, I.O.; Giannakos, M.N.; Kourouthanassis, P.E.; Chrissikopoulos, V. Assessing emotions related to privacy and trust in personalized services. In Proceedings of the Conference on e-Business, e-Services and e-Society, Kaunas, Lithuania, 12–14 October 2011; pp. 38–49. [Google Scholar]
Demographic Characteristics | Frequency | Percentage | |
---|---|---|---|
Gender | Male | 205 | 66.3 |
Female | 104 | 33.7 | |
Age | 20–29 years | 165 | 53.4 |
30–39 years | 105 | 34.0 | |
40–49 years | 22 | 7.1 | |
50–59 years | 05 | 1.6 | |
Above 60 years | 12 | 3.9 | |
Educational Level | Graduate | 100 | 32.4 |
Post Graduate | 147 | 47.6 | |
PhD | 51 | 16.5 | |
Other | 11 | 3.6 | |
Frequency of use for one month | 1–2 times | 67 | 21.6 |
3–4 times | 102 | 33 | |
5–6 times | 113 | 36.5 | |
7–8 times | 18 | 5.8 | |
Above 9 times | 09 | 2.9 |
Variable and Item | Standardized Loading | CR | AVE |
---|---|---|---|
Performance Expectancy (α = 0.890) | |||
I find news apps useful in my daily life | 0.69 | 0.896 | 0.685 |
Using news apps helps me accomplish things more quickly | 0.91 | ||
News apps help me accomplish tasks more quickly | 0.90 | ||
Using news apps increases my productivity | 0.78 | ||
Effort Expectancy (α = 0.862) | |||
Learning how to use news apps is easy for me | 0.82 | 0.866 | 0.618 |
My interaction with news app is clear and understandable | 0.83 | ||
I find news apps easy to use | 0.77 | ||
It is easy for me to become skillful at using news apps | 0.73 | ||
Social Influence (α = 0.927) | |||
People who are important to me think that I should use news apps | 0.85 | 0.929 | 0.814 |
People who influences my behavior think that I should use news apps | 0.96 | ||
People whose opinions that I value prefer that I use news apps | 0.90 | ||
Facilitating Conditions (α = 0.751) | |||
News apps are compatible with other technologies I use | 0.89 | 0.844 | 0.650 |
I can get help from others when I have difficulties using news apps | 0.97 | ||
I have the knowledge necessary to use news apps | 0.91 | ||
I have the resources necessary to use news apps | Dropped | ||
Hedonic Motivation (α = 0.922) | |||
Using news apps is fun | 0.81 | 0.925 | 0.806 |
Using news apps is enjoyable | 0.97 | ||
Using news apps is entertaining | 0.91 | ||
Habit (α = 0.851) | |||
The use of news apps has become a habit for me | 0.89 | 0.853 | 0.661 |
I am addicted to using news apps | 0.77 | ||
I must use news apps | 0.77 | ||
Personalization (α = 0.934) | |||
News apps understand my needs | 0.90 | 0.932 | 0.734 |
News apps know what I want | 0.94 | ||
News apps take my needs as their own preference | 0.87 | ||
News apps can provide me with personalized news to my activity context | 0.80 | ||
News apps can provide me with more relevant information tailored to my preferences or personal interests | 0.76 | ||
Continuous Use Intention (α = 0.939) | |||
I intend to continue using news apps in the future | 0.87 | 0.940 | 0.840 |
I will always try to use news apps in my daily life | 0.94 | ||
I will keep using news apps as regularly as I do now | 0.93 |
Variable | FC | PER | EE | PE | CUI | SI | HM | HT |
---|---|---|---|---|---|---|---|---|
FC | 0.806 | |||||||
PER | 0.395 | 0.857 | ||||||
EE | 0.590 | 0.426 | 0.786 | |||||
PE | 0.176 | 0.504 | 0.383 | 0.827 | ||||
CUI | 0.338 | 0.498 | 0.373 | 0.548 | 0.916 | |||
SI | 0.200 | 0.400 | 0.231 | 0.450 | 0.319 | 0.902 | ||
HM | 0.278 | 0.559 | 0.408 | 0.515 | 0.581 | 0.356 | 0.898 | |
HT | 0.323 | 0.470 | 0.404 | 0.388 | 0.542 | 0.287 | 0.625 | 0.813 |
Mean | 6.035 | 5.238 | 5.632 | 3.204 | 4.976 | 3.819 | 4.370 | 4.972 |
S.D. | 0.915 | 1.465 | 0.828 | 0.786 | 1.090 | 1.249 | 1.122 | 1.429 |
Hypotheses | Beta | t-Value | p-Value | Decision | |
---|---|---|---|---|---|
H1 | PER -> CUI | 0.068 | 1.236 | 0.217 | rejected |
H2 | PE -> CUI | 0.335 | 1.236 ** | 0.000 | supported |
H4 | EE -> CUI | −0.076 | 1.327 | 0.185 | rejected |
H6 | SI -> CUI | −0.027 | −0.593 | 0.553 | rejected |
H8 | FC -> CUI | 0.173 | 3.203 ** | 0.001 | supported |
H10 | HM -> CUI | 0.208 | 3.479 ** | 0.000 | supported |
H12 | HA -> CUI | 0.250 | 3.479 ** | 0.000 | supported |
Hypotheses | Moderator | Moderation | Coefficient | SE | T | p * | LLCI | ULCI | Decision |
---|---|---|---|---|---|---|---|---|---|
Moderating effect of PER b/w PE and CUI | |||||||||
H3 | PER | PE × PER | −0.1109 | 0.0494 | −2.2456 * | 0.0254 | −0.2081 | −0.0137 | supported |
Moderating effect of PER b/w EE and CUI | |||||||||
H5 | PER | EE × PER | −0.0126 | 0.0423 | −0.2985 | 0.7655 | −0.0958 | 0.0706 | rejected |
Moderating effect of PER b/w SI and CUI | |||||||||
H7 | PER | SI × PER | −0.0613 | 0.0350 | −1.7513 | 0.0809 | −0.1301 | 0.0076 | rejected |
Moderating effect of PER b/w FC and CUI | |||||||||
H9 | PER | FC × PER | 0.0550 | 0.0378 | 1.4538 | 0.1470 | −0.194 | 0.1295 | rejected |
Moderating effect of PER b/w HM and CUI | |||||||||
H11 | PER | HM × PER | −0.0376 | 0.0349 | −1.0760 | 0.2828 | −0.1063 | 0.0311 | rejected |
Moderating effect of PER b/w HT and CUI | |||||||||
H13 | PER | HA × PER | −0.0743 | 0.0279 | −2.6597 * | 0.0082 | −0.1292 | −0.0193 | supported |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Sharma, S.; Sharma, P.; Kulathunga, K. Role of Personalization in Continuous Use Intention of Mobile News Apps in India: Extending the UTAUT2 Model. Information 2020, 11, 33. https://doi.org/10.3390/info11010033
Cheng Y, Sharma S, Sharma P, Kulathunga K. Role of Personalization in Continuous Use Intention of Mobile News Apps in India: Extending the UTAUT2 Model. Information. 2020; 11(1):33. https://doi.org/10.3390/info11010033
Chicago/Turabian StyleCheng, Yanxia, Saurabh Sharma, Prashant Sharma, and KMMCB Kulathunga. 2020. "Role of Personalization in Continuous Use Intention of Mobile News Apps in India: Extending the UTAUT2 Model" Information 11, no. 1: 33. https://doi.org/10.3390/info11010033
APA StyleCheng, Y., Sharma, S., Sharma, P., & Kulathunga, K. (2020). Role of Personalization in Continuous Use Intention of Mobile News Apps in India: Extending the UTAUT2 Model. Information, 11(1), 33. https://doi.org/10.3390/info11010033