Viability of Neural Networks for Core Technologies for Resource-Scarce Languages
Abstract
:1. Introduction
- (1)
- Conjunctive languages (four Nguni languages, viz. isiZulu, isiXhosa, isiNdebele, and Siswati);
- (2)
- Disjunctive languages (Tshivenḓa, Xitsonga, and three Sotho-Tswana languages (Sesotho, Sepedi and Setswana)); and
- (3)
- Middle of the scale (two West-Germanic languages, viz. Afrikaans and English.
2. Neural Network Architecture
2.1. Embeddings
2.2. Sequence Tagging
2.3. Sequence-to-Sequence
3. Method
3.1. Languages and Data
3.1.1. Sequence Tagging
3.1.2. Sequence Translation
3.2. Models
3.2.1. Sequence Tagging
3.2.2. Sequence Translation
3.3. Evaluation
3.3.1. Sequence Tagging
3.3.2. Sequence Translation
4. Results and Discussion
4.1. POS Tagging
4.2. NER
4.3. Compound Analysis
4.4. Lemmatisation
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Prinsloo, D.J.; De Schryver, G.M. Towards an 11 × 11 array for the degree of conjunctivism /disjunctivism of the South African languages. Nord. J. Afr. Stud. 2002, 11, 249–265. [Google Scholar]
- Eiselen, R.; Puttkammer, M.J. Developing Text Resources for Ten South African Languages. In Proceedings of the Ninth International Conference on Language Resources and Evaluation, Reykjavik, Iceland, 26–31 May 2014; pp. 3698–3703. [Google Scholar]
- Marcus, M. New trends in natural language processing: Statistical natural language processing. Proc. Natl. Acad. Sci. USA 1995, 92, 10052–10059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberman, M.Y. The Trend towards Statistical Models in Natural Language Processing. In Natural Language and Speech; Klein, E., Veltman, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 1–7. [Google Scholar]
- Nadkarni, P.M.; Ohno-Machado, L.; Chapman, W.W. Natural language processing: An introduction. J. Am. Med. Inform. Assoc. 2011, 18, 544–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prószéky, G. The (Hopefully Near) Future of Language Technologies. Procedia Comput. Sci. 2011, 7, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural Language Processing (Almost) from Scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537. [Google Scholar]
- Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. arXiv 2017, arXiv:1708.02709. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics—ACL ’02, Philadelphia, PA, USA, 7–12 July 2001; pp. 311–318. [Google Scholar]
- Castilho, S.; Moorkens, J.; Gaspari, F.; Calixto, I.; Tinsley, J.; Way, A. Is Neural Machine Translation the New State of the Art? Prague Bull. Math. Linguist. 2017, 108, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144. [Google Scholar]
- Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. arXiv 2017, arXiv:1705.03122. [Google Scholar]
- Bergmanis, T.; Goldwater, S. Context Sensitive Neural Lemmatisation with Lematus. In Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018. [Google Scholar]
- Kann, K.; Schütze, H. Single-Model Encoder-Decoder with Explicit Morphological Representation for Reinflection. arXiv 2016, arXiv:1606.00589. [Google Scholar]
- Goldberg, Y. Neural Network Methods for Natural Language Processing. Synth. Lect. Hum. Lang. Technol. 2017, 10, 1–309. [Google Scholar] [CrossRef]
- Groenewald, H.J. Educating Lia: The Development of a Linguistically Accurate Memory-Based Lemmatiser for Afrikaans. In Intelligent Information Processing III; Shi, Z., Shimohara, K., Feng, D., Eds.; Springer: Boston, MA, USA, 2007; Volume 228, pp. 431–440. [Google Scholar]
- Mzamo, L.; Helberg, A.; Bosch, S. Introducing XGL—A lexicalised probabilistic graphical lemmatiser for isiXhosa. In Proceedings of the 2015 PRASA-RobMech International Conference, Port Elizabeth, South Africa, 26–27 November 2015; pp. 142–147. [Google Scholar]
- van Huyssteen, G.B.; van Zaanen, M.M. Learning Compound Boundaries for Afrikaans Spelling Checking. In Proceedings of the First Workshop on International Proofing Tools and Language Technologies, Patras, Greece, 1–2 July 2004; pp. 101–108. [Google Scholar]
- Pilon, S.; Puttkammer, M.J.; Van Huyssteen, G.B. Die ontwikkeling van’n woordafbreker en kompositumanaliseerder vir Afrikaans. Literator 2008, 29, 21–42. [Google Scholar] [CrossRef]
- Schlünz, G.I.; Dlamini, N.; Kruger, R.P. Part-of-Speech Tagging and Chunking in Text-to-Speech Synthesis for South African Languages. In Proceedings of the INTERSPEECH 2016, San Francisco, CA, USA, 8–12 September 2016; pp. 3554–3558. [Google Scholar]
- Du Toit, J.S. A Comparative Evaluation of Open-Source Part-of-Speech Taggers for South African Languages, 2017; Unpublished Project Report.
- Eiselen, R. Government Domain Named Entity Recognition for South African Languages. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC), Portorož, Slovenia, 23–28 May 2016; pp. 3344–3348. [Google Scholar]
- Groenewald, H.J. Automatic Lemmatisation for Afrikaans. Master’s Thesis, North West University, Potchefstroom, South Africa, 2006. [Google Scholar]
- Groenewald, H.J. Using technology transfer to advance automatic lemmatization for Setswana. In Proceedings of the EACL 2009 Workshop on Language Technologies for African Languages, Athens, Greece, 31 March 2009; pp. 32–37. [Google Scholar]
- Fick, M. Neurale netwerke as moontlike woordafkappingstegniek vir Afrikaans. SA Tydskr. Nat. Tegnol. 2003, 22, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Fick, M. ’n Masjienleerbenadering tot Woordafbreking in Afrikaans. Ph.D. Thesis, UNISA, Adelaide, Australia, 2013. [Google Scholar]
- Li, H. Deep learning for natural language processing: Advantages and challenges. Natl. Sci. Rev. 2018, 5, 24–26. [Google Scholar] [CrossRef]
- Deep Learning Approaches for Low-Resource NLP, DeepLo. Available online: https://sites.google.com/view/deeplo18/home (accessed on 14 August 2018).
- Hedderich, M.A.; Klakow, D. Training a Neural Network in a Low-Resource Setting on Automatically Annotated Noisy Data. arXiv 2018, arXiv:1807.00745. [Google Scholar]
- Kann, K.; Bjerva, J.; Augenstein, I.; Plank, B.; Søgaard, A. Character-level Supervision for Low-resource POS Tagging. In Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, Melbourne, Australia, 19 July 2018; pp. 1–11. [Google Scholar]
- Goldberg, Y. A Primer on Neural Network Models for Natural Language Processing. J. Artif. Intell. Res. 2016, 57, 345–420. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A Neural Probabilistic Language Model. J. Mach. Learn. Res. 2003, 3, 1137–1155. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Compositionality. arXiv 2013, arXiv:1310.4546. [Google Scholar]
- Sutskever, I.; Martens, J.; Hinton, G. Generating Text with Recurrent Neural Networks. In Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011; pp. 1017–1024. [Google Scholar]
- Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. arXiv 2016, arXiv:1607.04606. [Google Scholar] [CrossRef] [Green Version]
- Nogueira dos Santos, C.; Zadrozny, B. Learning character-level representations for part-of-speech tagging. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014; Volume 32. [Google Scholar]
- Pinter, Y.; Guthrie, R.; Eisenstein, J. Mimicking Word Embeddings using Subword RNN’s. arXiv 2017, arXiv:1707.06961. [Google Scholar]
- Yu, X.; Faleńska, A.; Vu, N.T. A General-Purpose Tagger with Convolutional Neural Networks. arXiv 2017, arXiv:1706.01723. [Google Scholar]
- Wang, P.; Qian, Y.; Soong, F.K.; He, L.; Zhao, H. Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Recurrent Neural Network. arXiv 2015, arXiv:1510.06168. [Google Scholar]
- Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural Architectures for Named Entity Recognition. arXiv 2016, arXiv:1603.01360. [Google Scholar]
- Chiu, J.P.C.; Nichols, E. Named Entity Recognition with Bidirectional LSTM-CNN’s. arXiv 2015, arXiv:1511.08308. [Google Scholar]
- Ma, X.; Hovy, E. End-to-end Sequence Labeling via Bi-directional LSTM-CNN’s-CRF. arXiv 2016, arXiv:1603.01354. [Google Scholar]
- Dos Santos, C.N.; Guimarães, V. Boosting Named Entity Recognition with Neural Character Embeddings. arXiv 2015, arXiv:1505.05008. [Google Scholar]
- Zennaki, O.; Semmar, N.; Besacier, L. Unsupervised and Lightly Supervised Part-of-Speech Tagging Using Recurrent Neural Networks. In Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation (PACLIC), Shanghai, China, 30 October–1 November 2015; pp. 133–142. [Google Scholar]
- Fang, M.; Cohn, T. Model Transfer for Tagging Low-resource Languages using a Bilingual Dictionary. arXiv 2017, arXiv:1705.00424. [Google Scholar]
- Fang, M.; Cohn, T. Learning when to trust distant supervision: An application to low-resource POS tagging using cross-lingual projection. arXiv 2016, arXiv:1607.01133. [Google Scholar]
- Plank, B.; Søgaard, A.; Goldberg, Y. Multilingual Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Models; Auxiliary Loss. arXiv 2016, arXiv:1604.05529. [Google Scholar]
- Faruqui, M.; Tsvetkov, Y.; Neubig, G.; Dyer, C. Morphological Inflection Generation Using Character Sequence to Sequence Learning. In Proceedings of the NAACL-HLT 2016, San Diego, CA, USA, 12–17 June 2016; pp. 634–643. [Google Scholar]
- Schnober, C.; Eger, S.; Dinh, E.-L.D.; Gurevych, I. Still not there? Comparing Traditional Sequence-to-Sequence Models to Encoder-Decoder Neural Networks on Monotone String Translation Tasks. In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 1703–1714. [Google Scholar]
- Hellwig, O. Using Recurrent Neural Networks for joint compound splitting and Sandhi resolution in Sanskrit. In Proceedings of the 7th LTC, Poznań, Poland, 27–29 November 2015; pp. 289–293. [Google Scholar]
- Dima, C.; Hinrichs, E. Automatic Noun Compound Interpretation using Deep Neural Networks and Word Embeddings. In Proceedings of the 11th International Conference on Computational Semantics, London, UK, 14–17 April 2015; pp. 173–183. [Google Scholar]
- Pilon, S. ’n Woordsoortetiketteerder vir Afrikaans. S. Afr. Linguist. Appl. Lang. Stud. 2008, 26, 119–134. [Google Scholar] [CrossRef]
- Taljard, E. A Comparison of Approaches to Word Class Tagging: Disjunctively vs. Conjunctively Written Bantu Languages. Nord. J. Afr. Stud. 2006, 15, 37. [Google Scholar]
- Tjong, E.F.; Sang, K.; De Meulder, F. Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, Edmonton, AB, Canada, 31 May–1 June 2003; Volume 4, pp. 142–147. [Google Scholar]
- CoNLL-U Format. 2017. Available online: http://universaldependencies.org/format.html (accessed on 2 August 2018).
- Grave, E.; Bojanowski, P.; Gupta, P.; Joulin, A.; Mikolov, T. Learning Word Vectors for 157 Languages. arXiv 2018, arXiv:1802.06893. [Google Scholar]
- Wiseman, S.; Rush, A.M. Sequence-to-Sequence Learning as Beam-Search Optimization. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 1296–1306. [Google Scholar]
- Gu, J.; Lu, Z.; Li, H.; Li, V.O.K. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 1631–1640. [Google Scholar]
- Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; Rush, A.M. OpenNMT: Open-Source Toolkit for Neural Machine Translation. arXiv 2017, arXiv:1701.02810. [Google Scholar]
- Britz, D.; Goldie, A.; M.-Luong, T.; Le, Q. Massive Exploration of Neural Machine Translation Architectures. arXiv 2017, arXiv:1703.03906. [Google Scholar]
- Bengio, S.; Vinyals, O.; Jaitly, N.; Shazeer, N. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. arXiv 2015, arXiv:1506.03099. [Google Scholar]
- Bohnet, B.; Nivre, J. A Transition-Based System for Joint Part-of-Speech Tagging and Labeled Non-Projective Dependency Parsing. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning Association for Computational Linguistics, Jeju Island, Korea, 12–14 July 2012; pp. 1455–1465. [Google Scholar]
- University of Stuttgart. Mate Tools. Available online: http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/matetools.en.html (accessed on 16 August 2018).
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2017, arXiv:1810.11363. [Google Scholar]
- Al-Rfou, R.; Perozzi, B.; Skiena, S. Polyglot: Distributed Word Representations for Multilingual NLP. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning, Sofia, Bulgaria, 8–9 August 2013; pp. 183–192. [Google Scholar]
Language | Writing System | Tokens (POS) | Types (POS) | Unique Tags in Data (POS) | Tokens (NER) | Types (NER) | Named Entities (NER) |
---|---|---|---|---|---|---|---|
Afrikaans (af) | Mixed | 55,483 | 7108 | 98 | 206,614 | 22,657 | 12,543 |
Af-100k | Mixed | 100,423 | 12,470 | 113 | -- | -- | |
IsiNdebele (nr) | Conjunctive | 38,426 | 13,558 | 95 | 145,190 | 40,046 | 15,854 |
IsiXhosa (xh) | Conjunctive | 42,061 | 15,008 | 75 | 108,766 | 35,622 | 12,260 |
IsiZulu (zu) | Conjunctive | 41,714 | 14,125 | 99 | 180,751 | 52,628 | 18,592 |
Siswati (ss) | Conjunctive | 39,486 | 13,628 | 92 | 157,412 | 45,013 | 16,429 |
Sepedi (nso) | Disjunctive | 62,841 | 5782 | 137 | 181,299 | 16,822 | 10,583 |
Sesotho (st) | Disjunctive | 62,929 | 5831 | 165 | 242,148 | 16,817 | 12,530 |
Setswana (tn) | Disjunctive | 62,842 | 6024 | 139 | 209,085 | 17,234 | 11,498 |
Xitsonga (ts) | Disjunctive | 62,961 | 5828 | 143 | 240,937 | 16,600 | 14,770 |
Tshivenda (ve) | Disjunctive | 59,818 | 5340 | 220 | 211,694 | 15,059 | 10,701 |
Language | Tokens | Types | Lemmas | Tokens | Types | Lemmas |
---|---|---|---|---|---|---|
af-lia | 72,226 | 61,881 | -- | -- | ||
af-nchlt | 55,483 | 7108 | 5515 | 5834 | 1675 | 1450 |
nr | 38,426 | 13,558 | 3595 | 3904 | 2323 | 1636 |
nso | 62,841 | 5782 | 2866 | 7153 | 1485 | 1042 |
ss | 39,486 | 13,628 | 7162 | 4075 | 2364 | 1813 |
st | 62,929 | 5831 | 2810 | 6847 | 1563 | 1080 |
tn | 62,842 | 6024 | 2970 | 6803 | 1588 | 1144 |
ts | 62,961 | 5828 | 4542 | 6518 | 1450 | 1243 |
ve | 59,818 | 5340 | 3606 | 6646 | 1493 | 1245 |
xh | 42,061 | 15,008 | 3577 | 4409 | 2547 | 1707 |
zu | 41,714 | 14,125 | 2830 | 4343 | 2415 | 1647 |
Input Sequence | Target Sequence |
---|---|
r e g e r i n g s b e l e i d | r e g e r i n g _ s + b e l e i d. |
Input Sequence | Target Sequence |
---|---|
<w> <lc> L a a i <rc> d i e <s> e l e k t r <\w> | l a a i |
<w> L a a i <lc> d i e <rc> e l e k t r o n i e <\w> | d i e |
<w> L a a i <s> d i e <lc> e l e k t r o n i e s e <rc> a a n s o e k v o r <\w> | e l e k t r o n i e s |
<w> e k t r o n i e s e <lc> a a n s o e k v o r m <rc> a f <s> <\w> | a a n s o e k v o r m |
<w> a a n s o e k v o r m <lc> a f <rc> <s> <\w> | af |
Mate Baseline | bilstm-aux | bilstm-aux with Fasttext Embeddings | BiLSTM-aux with 40,000 Tokens | |
---|---|---|---|---|
English * | 92.66% (TnT) | 92.10% | 95.16% | n/a |
German * | 92.64% (TnT) | 90.33% | 93.38% | n/a |
af-100k | 91.50% | 91.50% | 92.00% | n/a |
af | 93.90% | 93.10% | 94.30% | 91.20% |
nr | 83.00% | 79.90% | n/a ** | 79.90% |
nso | 94.80% | 95.20% | 94.90% | 94.10% |
ss | 83.00% | 81.40% | 81.50% | 81.40% |
st | 89.40% | 89.10% | 89.90% | 88.20% |
tn | 90.10% | 89.20% | 88.90% | 88.50% |
ts | 88.60% | 88.30% | 88.10% | 87.30% |
ve | 87.40% | 86.50% | 86.00% | 85.40% |
xh | 87.60% | 84.90% | 85.30% | 84.90% |
zu | 85.90% | 84.10% | 84.00% | 84.10% |
Average (SA languages) | 88.37% | 87.17% | 88.10% | 86.50% |
CRF Baseline * | bilstm-aux | bilstm-aux emb | CRF Baseline * | bilstm-aux | bilstm-aux emb | CRF Baseline * | bilstm-aux | bilstm-aux emb | |
---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | |||||||
af | 78.59% | 73.61% | 73.41% | 73.32% | 78.23% | 78.23% | 75.86% | 75.85% | 75.74% |
nr | 77.03% | 78.58% | n/a ** | 73.26% | 79.20% | n/a ** | 75.10% | 78.89% | n/a ** |
nso | 76.12% | 75.91% | 72.14% | 72.88% | 79.66% | 77.63% | 74.46% | 77.74% | 74.79% |
ss | 69.03% | 70.02% | 69.93% | 60.17% | 71.44% | 72.82% | 64.29% | 70.72% | 71.35% |
st | 76.17% | 53.29% | 50.31% | 70.27% | 55.56% | 57.73% | 73.09% | 54.40% | 53.77% |
tn | 80.86% | 74.14% | 73.45% | 75.47% | 77.42% | 74.71% | 78.06% | 75.74% | 74.07% |
ts | 72.48% | 72.33% | 71.03% | 69.46% | 71.44% | 71.25% | 70.93% | 71.88% | 71.14% |
ve | 73.96% | 67.97% | 63.82% | 72.92% | 65.91% | 67.09% | 73.43% | 66.92% | 65.41% |
xh | 78.60% | 69.83% | 69.08% | 75.61% | 73.30% | 72.78% | 77.08% | 71.52% | 70.88% |
zu | 73.56% | 72.43% | 73.44% | 66.64% | 72.64% | 74.32% | 69.93% | 72.54% | 73.87% |
Average | 75.64% | 70.81% | 68.51% | 71.00% | 72.48% | 71.84% | 73.22% | 71.62% | 70.11% |
Knn Baseline | CatBoost * | Neural Model | |
---|---|---|---|
Accuracy | 81.28% | 92.50% | 96.13% |
Precision | Not available | 96.84% | 98.05% |
Recall | Not available | 96.22% | 98.27% |
F1-score | 90.57% | 96.53% | 98.16% |
Error | Word | Predicted Analysis | Correct Analysis |
---|---|---|---|
Adding a character | Mosambiek | Mosambbiek | Mosambiek |
Deleting a character | teboekstelling | te+oek+stelling | te+boek+stelling |
Substituting a character | lintbebouing | lint+bbbouing | lint+bebouing |
Lia (Lia Data) Baseline | Context-Insensitive Neural Model (Lia Data) | Context-Insensitive Neural Model (NCHLT Data) | Context-Sensitive Neural Model (NCHLT Data) | |
---|---|---|---|---|
Accuracy | 95.92% | 94.84% | 95.10% | 93.68% |
Precision | 90.74% | 78.39% | 82.63% | 77.75% |
Recall | 86.46% | 88.99% | 95.97% | 95.83% |
F1-score | 88.55% | 83.35% | 88.80% | 85.85% |
Rule-Based * Baseline | Context-Insensitive Neural Model | Context-Sensitive Neural Model | |
---|---|---|---|
nr | 80.32% | 73.17% | 67.39% |
nso | 77.90% | 91.16% | 88.59% |
ss | 81.60% | 79.61% | 69.51% |
st | 76.43% | 82.58% | 80.86% |
tn | 74.86% | 76.70% | 73.76% |
ts | 76.09% | 85.67% | 86.50% |
ve | 77.54% | 79.68% | 79.34% |
xh | 79.82% | 74.92% | 74.10% |
zu | 81.56% | 74.87% | 74.08% |
Average | 78.46% | 79.82% | 77.13% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loubser, M.; Puttkammer, M.J. Viability of Neural Networks for Core Technologies for Resource-Scarce Languages. Information 2020, 11, 41. https://doi.org/10.3390/info11010041
Loubser M, Puttkammer MJ. Viability of Neural Networks for Core Technologies for Resource-Scarce Languages. Information. 2020; 11(1):41. https://doi.org/10.3390/info11010041
Chicago/Turabian StyleLoubser, Melinda, and Martin J. Puttkammer. 2020. "Viability of Neural Networks for Core Technologies for Resource-Scarce Languages" Information 11, no. 1: 41. https://doi.org/10.3390/info11010041
APA StyleLoubser, M., & Puttkammer, M. J. (2020). Viability of Neural Networks for Core Technologies for Resource-Scarce Languages. Information, 11(1), 41. https://doi.org/10.3390/info11010041