Monte Carlo Based Statistical Model Checking of Cyber-Physical Systems: A Review
Abstract
:1. Introduction
2. Cyber-Physical Systems
2.1. Modelling the Environment
2.2. Modelling the SUV
- X, the space of state values of , is a non-empty set whose elements are said states of ;
- U, the space of input values of , is a non-empty set whose elements are said input values for ;
- Y, the space of output values of , is a non-empty set whose elements are said output values for ;
- T is a time set;
- , the space of input functions of , is a non-empty subset of ;
- , is the transition map of ;
- is the observation function of .
- Causality. For all , , , :
- Consistency. For all , , :
- Semigroup. For all , , , :
2.3. Modelling the Specifications
- Z is the space of state values of the system Q;
- is the space of input values of the system Q;
- is the space of output values of the system Q;
- T is the time set of the system Q (and );
- is the space of input functions of Q;
- μ is the transition map of Q; and,
- θ is the observation function of Q.
- X = U = Y = T = ;
- is the set of constant functions from T to U;
- = ;
- = .
- X, Z, U, T and as in Example 1;
- = (, + );
- =
2.4. Statistical Model Checking
3. Background
3.1. System Models
3.2. System Properties
4. Statistical Inference Approaches
4.1. Hypothesis Testing
4.2. Estimation
4.3. Bayesian Analysis
4.4. Summary of the Algorithms Used for HT and Estimation
5. Statistical Model Checking Tools
5.1. (P)VeStA
5.2. MultiVeStA
5.3. Simulation-Based SMC for Hybrid Systems
5.4. APMC
5.5. PRISM
5.6. Ymer
5.7. UPPAAL-SMC
5.8. COSMOS
5.9. GreatSPN
5.10. MRMC
5.11. SBIP
5.12. MARCIE
5.13. Modest Toolset Discrete Event Simulator: Modes
5.14. APD Analyser
5.15. ViP Generator
5.16. SAM
5.17. Bayesian Tool
5.18. Tool Comparison
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alur, R. Principles of Cyber-Physical Systems; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Clarke, E.; Wing, J.M. Formal Methods: State of the Art and Future Directions. Comput. Surv. (CSUR) 1996, 28, 626–643. [Google Scholar] [CrossRef]
- Legay, A.; Delahaye, B.; Bensalem, S. Statistical Model Checking: An Overview. In Runtime Verification, First International Conference, RV 2010, St. Julians, Malta, November 2010. Proceedings; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6418, pp. 122–135. [Google Scholar] [CrossRef] [Green Version]
- Agha, G.; Palmskog, K. A Survey of Statistical Model Checking. ACM Trans. Model. Comput. Simul. 2018, 28, 6:1–6:39. [Google Scholar] [CrossRef]
- Reijsbergen, D.; de Boer, P.T.; Scheinhardt, W.; Haverkort, B. On hypothesis testing for statistical model checking. Int. J. Softw. Tools Technol. Transf. 2015, 17, 377–395. [Google Scholar] [CrossRef]
- Bakir, M.; Gheorghe, M.; Konur, S.; Stannett, M. Comparative Analysis of Statistical Model Checking Tools. In Proceedings of the Membrane Computing: 17th International Conference (CMC 2016), Milan, Italy, 25–29 July 2016. [Google Scholar] [CrossRef]
- Zuliani, P.; Platzer, A.; Clarke, E. Bayesian Statistical Model Checking with Application to Stateflow/Simulink Verification. Form. Methods Syst. Des. 2013, 43, 338–367. [Google Scholar] [CrossRef] [Green Version]
- Devroye, L. Non-Uniform Random Variate Generation; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Simulink. Available online: http://www.mathworks.com (accessed on 18 December 2020).
- Dymola. Available online: http://www.claytex.com/products/dymola/ (accessed on 18 December 2020).
- SimulationX. Available online: http://www.simulationx.com (accessed on 18 December 2020).
- Wolfram Research, Inc. SystemModeler. Available online: http://www.wolfram.com/system-modeler (accessed on 18 December 2020).
- Zhou, F.; Chen, L.; Wu, Y.; Ding, J.; Zhao, J.; Zhang, Y. MWorks: A Modern IDE for Modeling and Simulation of Multi-domain Physical Systems Based on Modelica. In Proceedings of the 5th International Modelica Conference (Modelica 2006), Vienna, Austria, 4–5 September 2006. [Google Scholar]
- OpenModelica. Available online: http://www.openmodelica.org (accessed on 18 December 2020).
- Kwiatkowska, M.; Norman, G.; Parker, D. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV 2011), Snowbird, UT, USA, 14–20 July 2011; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2011; Volume 6806, pp. 585–591. [Google Scholar]
- McMillan, K. The SMV System. In Symbolic Model Checking; Springer: Berlin/Heidelberg, Germany, 1993; pp. 61–85. [Google Scholar]
- Baier, C.; Katoen, J.P. Principles of Model Checking (Representation and Mind Series); MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Sontag, E. Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Cellier, F.; Kofman, E. Continuous System Simulation; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Pinisetty, S.; Jéron, T.; Tripakis, S.; Falcone, Y.; Marchand, H.; Preoteasa, V. Predictive runtime verification of timed properties. J. Syst. Softw. 2017, 132, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Thati, P.; Roşu, G. Monitoring Algorithms for Metric Temporal Logic Specifications. In Runtime Verification, Fourth Workshop on Runtime Verification 2004, RV 2004, Barcelona, Spain, April 2004. Proceedings; Electronic Notes in Theoretical Computer Science; Elsevier: Amsterdam, The Netherlands, 2004; Volume 113, pp. 145–162. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Leucker, M.; Schallhart, C. Runtime Verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 2011, 20. [Google Scholar] [CrossRef]
- Abbas, H.; Fainekos, G.; Sankaranarayanan, S.; Ivančić, F.; Gupta, A. Probabilistic Temporal Logic Falsification of Cyber-Physical Systems. ACM Trans. Embed. Comput. Syst. 2013, 12, 95:1–95:30. [Google Scholar] [CrossRef] [Green Version]
- Katoen, J. The Probabilistic Model Checking Landscape. In 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2016); Association for Computing Machinery: New York, NY, USA, 2016; pp. 31–45. [Google Scholar] [CrossRef]
- Younes, H.; Kwiatkowska, M.; Norman, G.; Parker, D. Numerical vs. Statistical Probabilistic Model Checking. Int. J. Softw. Tools Technol. Transf. 2006, 8, 216–228. [Google Scholar] [CrossRef]
- Baier, C.; Haverkort, B.; Hermanns, H.; Katoen, J.P. Model-checking algorithms for continous-time markov chains. IEEE Trans. Softw. Eng. 2003, 29, 524–541. [Google Scholar] [CrossRef] [Green Version]
- Younes, H.; Simmons, R. Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling. In Proceedings of the 14th International Conference on Computer Aided Verification (CAV 2002), Copenhagen, Denmark, 27–31 July 2002; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2404, Lecture Notes in Computer Science. pp. 223–235. [Google Scholar] [CrossRef] [Green Version]
- Sen, K.; Viswanathan, M.; Agha, G. Statistical model checking of black-box probabilistic systems. In Proceedings of the 16th International Conference on Computer Aided Verification (CAV 2004), Boston, MA, USA, 13–17 July 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3114, Lecture Notes in Computer Science. pp. 202–213. [Google Scholar]
- Whitt, W. Continuity of Generalized Semi-Markov Processes. Math. Oper. Res. 1980, 5, 494–501. [Google Scholar] [CrossRef]
- Ballarini, P.; Barbot, B.; Duflot, M.; Haddad, S.; Pekergin, N. HASL: A New Approach for Performance Evaluation and Model Checking from Concepts to Experimentation. Perform. Eval. 2015, 90, 53–77. [Google Scholar] [CrossRef] [Green Version]
- Norman, G.; Parker, D.; Sproston, J. Model checking for probabilistic timed automata. Form. Methods Syst. Des. 2013, 43, 164–190. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Du, D.; Larsen, K.; Legay, A.; Mikučionis, M.; Poulsen, D.; Sedwards, S. Statistical Model Checking for Stochastic Hybrid Systems. Electron. Proc. Theor. Comput. Sci. 2012, 92, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Legay, A.; Sedwards, S.; Traonouez, L. Scalable Verification of Markov Decision Processes. In Software Engineering and Formal Methods; Springer: Berlin/Heidelberg, Germany, 2015; pp. 350–362. [Google Scholar] [CrossRef] [Green Version]
- Puterman, M. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Agha, G.; Meseguer, J.; Sen, K. PMaude: Rewrite-based Specification Language for Probabilistic Object Systems. In Proceedings of the 3rd Workshop on Quantitative Aspects of Programming Languages (QAPL 2005); Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- De Nicola, R.; Katoen, J.; Latella, D.; Loreti, M.; Massink, M. Model checking mobile stochastic logic. Theor. Comput. Sci. 2007, 382, 42–70. [Google Scholar] [CrossRef]
- De Nicola, R.; Ferrari, G.L.; Pugliese, R. KLAIM: A kernel language for agents interaction and mobility. IEEE Trans. Softw. Eng. 1998, 24, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Rozier, K. Linear Temporal Logic Symbolic Model Checking. Comput. Sci. Rev. 2011, 5, 163–203. [Google Scholar] [CrossRef]
- Mediouni, B.; Nouri, A.; Bozga, M.; Dellabani, M.; Legay, A.; Bensalem, S. SBIP 2.0: Statistical Model Checking Stochastic Real-Time Systems. In Proceedings of the 16th International Symposium on Automated Technology for Verification and Analysis (ATVA 2018), Los Angeles, CA, USA, 7–10 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 536–542. [Google Scholar]
- Alur, R.; Feder, T.; Henzinger, T. The Benefits of Relaxing Punctuality. J. ACM 1996, 43, 116–146. [Google Scholar] [CrossRef]
- Clarke, E.; Henzinger, T.; Veith, H. Handbook of Model Checking; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Hansson, H.; Jonsson, B. A logic for reasoning about time and reliability. Form. Asp. Comput. 1994, 6, 512–535. [Google Scholar] [CrossRef] [Green Version]
- Sen, K.; Viswanathan, M.; Agha, G. On Statistical Model Checking of Stochastic Systems. In Proceedings of the 17th International Conference on Computer Aided Verification (CAV 2005), Edinburgh, UK, 6–10 July 2005; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2005; Volume 3576, pp. 266–280. [Google Scholar]
- Baier, C. On Algorithmic Verification Methods for Probabilistic Systems. Ph.D. Thesis, University of Mannheim, Mannheim, Germany, 1998. [Google Scholar]
- Donatelli, S.; Haddad, S.; Sproston, J. Model Checking Timed and Stochastic Properties with CSLTA. IEEE Trans. Softw. Eng. 2009, 35, 224–240. [Google Scholar] [CrossRef]
- Hoeffding, W. Probability Inequalities for Sums of Bounded Random Variables. J. Am. Stat. Assoc. 1963, 13–30. [Google Scholar] [CrossRef]
- Wald, A. Sequential tests of statistical hypotheses. Ann. Math. Stat. 1945, 16, 117–186. [Google Scholar] [CrossRef]
- Younes, H. Verification and Planning for Stochastic Processes with Asynchronous Events. Ph.D. Thesis, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, USA, 2005. [Google Scholar]
- Jegourel, C.; Legay, A.; Sedwards, S. Command-based importance sampling for statistical model checking. Theor. Comput. Sci. 2016, 649, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Jegourel, C.; Legay, A.; Sedwards, S. Importance Splitting for Statistical Model Checking Rare Properties. In Proceedings of the 25th International Conference on Computer Aided Verification (CAV 2013), Saint Petersburg, Russia, 13–19 July 2013; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2013; Volume 8044, pp. 576–591. [Google Scholar]
- Legay, A.; Lukina, A.; Traonouez, L.; Yang, J.; Smolka, S.; Grosu, R. Statistical Model Checking. In Computing and Software Science: State of the Art and Perspectives; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 478–504. [Google Scholar] [CrossRef] [Green Version]
- Grosu, R.; Smolka, S. Quantitative Model checking. In Proceedings of the 1st International Symposium on Leveraging Applications of Formal Method (ISoLA 2004), Paphos, Cyprus, 30 October–2 November 2004; pp. 165–174. [Google Scholar]
- Grosu, R.; Smolka, S. Monte Carlo Model Checking. In Proceedings of the 11th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2005), Edinburgh, UK, 4–8 April 2005; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3440, Lecture Notes in Computer Science. pp. 271–286. [Google Scholar] [CrossRef] [Green Version]
- Dagum, P.; Karp, R.; Luby, M.; Ross, S.M. An Optimal Algorithm for Monte Carlo Estimation. SIAM J. Comput. 2000, 29, 1484–1496. [Google Scholar] [CrossRef]
- Jha, S.; Clarke, E.; Langmead, C.; Legay, A.; Platzer, A.; Zuliani, P. A Bayesian Approach to Model Checking Biological Systems. In Proceedings of the 7th International Conference on Computational Methods in Systems Biology (CMSB 2009), Bologna, Italy, 31 August–1 September 2009; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2009; Volume 5688, pp. 218–234. [Google Scholar] [CrossRef] [Green Version]
- Bortolussi, L.; Milios, D.; Sanguinetti, G. Smoothed model checking for uncertain Continuous-Time Markov Chains. Inf. Comput. 2016, 247, 235–253. [Google Scholar] [CrossRef]
- Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Tronci, E. SyLVaaS: System Level Formal Verification as a Service. In Proceedings of the 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015), Turku, Finland, 4–6 March 2015; pp. 476–483. [Google Scholar]
- Annpureddy, Y.; Liu, C.; Fainekos, G.E.; Sankaranarayanan, S. S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems. In Proceedings of the 17th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2011), Saarbrücken, Germany, 26 March–3 April 2011; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2011; Volume 6605, pp. 254–257. [Google Scholar] [CrossRef] [Green Version]
- Bresolin, D.; Collins, P.; Geretti, L.; Segala, R.; Villa, T.; Gonzalez, S. A Computable and Compositional Semantics for Hybrid Automata. In Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control (HSCC 2020), Sydney, Australia, 21–24 April 2020; ACM: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Frehse, G.; Le Guernic, C.; Donzé, A.; Cotton, S.; Ray, R.; Lebeltel, O.; Ripado, R.; Girard, A.; Dang, T.; Maler, O. SpaceEx: Scalable Verification of Hybrid Systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV 2011), Snowbird, UT, USA, 14–20 July 2011; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2011; Volume 6806, pp. 379–395. [Google Scholar]
- Luckow, K.; Păsăreanu, C.; Dwyer, M.; Filieri, A.; Visser, W. Exact and Approximate Probabilistic Symbolic Execution for Nondeterministic Programs. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (ASE 2014), Vsters, Sweden, 15–19 September 2014; ACM: New York, NY, USA, 2014. [Google Scholar]
- Hogg, R.; McKean, J.W.; Craig, A.T. Introduction to Mathematical Statistics, 8th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2018. [Google Scholar]
- Sen, K.; Viswanathan, M.; Agha, G. VeStA: A statistical model-checker and analyzer for probabilistic systems. In Proceedings of the QEST 2005—Proceedings Second International Conference on the Quantitative Evaluation of SysTems, Torino, Italy, 19–22 September 2005; Volume 2005, pp. 251–252. [Google Scholar] [CrossRef]
- AlTurki, M.; Meseguer, J. PVeStA: A Parallel Statistical Model Checking and Quantitative Analysis Tool. In Proceedings of the 4th International Conference on Algebra and Coalgebra in Computer Science (CALCO 2011), Winchester, UK, 30 August–2 September 2011; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2011; Volume 6859, pp. 386–392. [Google Scholar]
- Sebastio, S.; Vandin, A. MultiVeStA: Statistical Model Checking for Discrete Event Simulators. In Proceedings of the 7th International Conference on Performance Evaluation Methodologies and Tools (ValueTools 2013), Torino, Italy, NY, USA, 10–12 December 2013; ICST/ACM: New York, NY, USA, 2013; pp. 310–315. [Google Scholar]
- Shmarov, F.; Zuliani, P. Probabilistic Hybrid Systems Verification via SMT and Monte Carlo Techniques. In Proceedings of the Hardware and Software: Verification and Testing, 12nd International Haifa Verification Conference (HVC 2016), Haifa, Israel, 14–17 November 2016; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2016; Volume 10028. [Google Scholar] [CrossRef] [Green Version]
- Xue, B.; Fränzle, M.; Zhao, H.; Zhan, N.; Easwaran, A. Probably Approximate Safety Verification of Hybrid Dynamical Systems. In Proceedings of the Formal Methods and Software Engineering—21st International Conference on Formal Engineering Methods (ICFEM 2019), Shenzhen, China, 5–9 November 2019; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2019; Volume 11852. [Google Scholar] [CrossRef]
- Xue, B.; Liu, Y.; Ma, L.; Zhang, X.; Sun, M.; Xie, X. Safe Inputs Approximation for Black-Box Systems. In Proceedings of the 24th International Conference on Engineering of Complex Computer Systems (ICECCS 2019), Guangzhou, China, 10–13 November 2019; pp. 180–189. [Google Scholar] [CrossRef]
- Plasma Lab. Available online: https://project.inria.fr/plasma-lab/ (accessed on 18 December 2020).
- Jegourel, C.; Legay, A.; Sedwards, S. A Platform for High Performance Statistical Model Checking–PLASMA. In Proceedings of the 18th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2012), Tallinn, Estonia, 24 March–1 April 2012; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2012; Volume 7214, pp. 498–503. [Google Scholar]
- Boyer, B.; Corre, K.; Legay, A.; Sedwards, S. PLASMA-lab: A Flexible, Distributable Statistical Model Checking Library. In Proceedings of the 10th International Conference on Quantitative Evaluation of Systems (QEST 2013), Buenos Aires, Argentina, 27–30 August 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–164. [Google Scholar]
- Hérault, T.; Lassaigne, R.; Magniette, F.; Peyronnet, S. Approximate Probabilistic Model Checking. In Proceedings of the 5th International Workshop on Verification, Model Checking, and Abstract Interpretation (VMCAI 2004), Venice, Italy, 11–13 January 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 73–84. [Google Scholar] [CrossRef]
- Lassaigne, R.; Peyronnet, S. Probabilistic verification and approximation. Ann. Pure Appl. Log. 2008, 152, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Peyronnet, S.; Lassaigne, R.; Herault, T. APMC 3.0: Approximate Verification of Discrete and Continuous Time Markov Chains. In Proceedings of the QEST 2006—Proceedings Third International Conference on the Quantitative Evaluation of SysTems, Riverside, CA, USA, 11–14 September 2006; pp. 129–130. [Google Scholar] [CrossRef]
- Henriques, D.; Martins, J.; Zuliani, P.; Platzer, A.; Clarke, E. Statistical Model Checking for Markov Decision Processes. In Proceedings of the 2012 Ninth International Conference on Quantitative Evaluation of Systems, London, UK, 17–20 September 2012; pp. 84–93. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.; Norman, G.; Kwiatkowska, M. PRISM 2017. Statistical Model Checker. Available online: https://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking (accessed on 18 December 2020).
- Younes, H. Ymer: A Statistical Model Checker. In Proceedings of the 17th International Conference on Computer Aided Verification (CAV 2005), Edinburgh, UK, 6–10 July 2005; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2005; Volume 3576, pp. 429–433. [Google Scholar] [CrossRef] [Green Version]
- Younes, H.; Clarke, E.; Zuliani, P. Statistical Verification of Probabilistic Properties with Unbounded Until. In Proceedings of the 13th Brazilian Symposium on Formal Methods (SBMF 2010), Natal, Brazil, 8–11 November 2010; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2010; Volume 6527. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Larsen, K.; Legay, A.; Mikučionis, M.; Poulsen, D. Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 2015, 17, 397–415. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, J.; Larsen, K.; Larsson, F.; Pettersson, P.; Yi, W. UPPAAL—A Tool Suite for Automatic Verification of Real-Time Systems. In Hybrid Systems III: Verification and Control; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1066, pp. 232–243. [Google Scholar] [CrossRef]
- Amparore, E.G.; Beccuti, M.; Donatelli, S. (Stochastic) Model Checking in GreatSPN. In Proceedings of the Applications and Theory of Petri Nets and Concurrency (PETRI NETS 2014), Tunis, Tunisia, 23–27 June 2014; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2014; Volume 8489, pp. 354–363. [Google Scholar] [CrossRef]
- Katoen, J.P.; Zapreev, I.S.; Hahn, E.M.; Hermanns, H.; Jansen, D.N. The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 2011, 68, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Nouri, A.; Mediouni, B.; Bozga, M.; Combaz, J.; Bensalem, S.; Legay, A. Performance Evaluation of Stochastic Real-Time Systems with the SBIP Framework. Int. J. Crit. Comput. Based Syst. 2018, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Verimag. BIP Component Framework. Available online: http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html (accessed on 18 December 2020).
- Heiner, M.; Rohr, C.; Schwarick, M. MARCIE—Model Checking and Reachability Analysis Done Efficiently. In Proceedings of the Applications and Theory of Petri Nets and Concurrency (PETRI NETS 2013), Milan, Italy, 24–28 June 2013; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2013; Volume 7927, pp. 389–399. [Google Scholar] [CrossRef]
- Bogdoll, J.; Hartmanns, A.; Hermanns, H. Simulation and Statistical Model Checking for Modestly Nondeterministic Models. In Proceedings of the Measurement Modelling and Evaluation of Computing Systems and Dependability and Fault Tolerance (MMB&DFT 2012), Kaiserslautern, Germany, 19–21 March 2012; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2012; pp. 249–252. [Google Scholar] [CrossRef]
- MODEST. Available online: http://www.modestchecker.net (accessed on 18 December 2020).
- Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Prodanovic, M.; Elmegaard, L. Demand-Aware Price Policy Synthesis and Verification Services for Smart Grids. In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm 2014), Venice, Italy, 3–6 November 2014; pp. 794–799. [Google Scholar] [CrossRef]
- Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Elmegaard, L. Parallel Statistical Model Checking for Safety Verification in Smart Grids. In Proceedings of the 2018 IEEE International Conference on Smart Grid Communications (SmartGridComm 2018), Aalborg, Denmark, 29–31 October 2018. [Google Scholar] [CrossRef] [Green Version]
- Mancini, T.; Mari, F.; Melatti, I.; Salvo, I.; Tronci, E.; Gruber, J.; Hayes, B.; Prodanovic, M.; Elmegaard, L. User Flexibility Aware Price Policy Synthesis for Smart Grids. In Proceedings of the 18th Euromicro Conference on Digital System Design (DSD 2015), Funchal, Portugal, 26–28 August 2015; pp. 478–485. [Google Scholar] [CrossRef]
- Hayes, B.; Melatti, I.; Mancini, T.; Prodanovic, M.; Tronci, E. Residential Demand Management using Individualised Demand Aware Price Policies. IEEE Trans. Smart Grid 2017, 8. [Google Scholar] [CrossRef]
- Tronci, E.; Mancini, T.; Salvo, I.; Sinisi, S.; Mari, F.; Melatti, I.; Massini, A.; Davi’, F.; Dierkes, T.; Ehrig, R.; et al. Patient-Specific Models from Inter-Patient Biological Models and Clinical Records. In Proceedings of the 14th International Conference on Formal Methods in Computer-Aided Design (FMCAD 2014), Lausanne, Switzerland, 21–24 October 2014; pp. 207–214. [Google Scholar] [CrossRef]
- Mancini, T.; Tronci, E.; Salvo, I.; Mari, F.; Massini, A.; Melatti, I. Computing Biological Model Parameters by Parallel Statistical Model Checking. In Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (IWBBIO 2015), Granada, Spain, 15–17 April 2015; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2015; Volume 9044, pp. 542–554. [Google Scholar] [CrossRef]
- Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Leeners, B. Complete populations of virtual patients for in silico clinical trials. Bioinformatics 2020. to appear. [Google Scholar] [CrossRef]
- Mancini, T.; Mari, F.; Massini, A.; Melatti, I.; Salvo, I.; Sinisi, S.; Tronci, E.; Ehrig, R.; Röblitz, S.; Leeners, B. Computing Personalised Treatments through In Silico Clinical Trials. A Case Study on Downregulation in Assisted Reproduction. In Proceedings of the 25th RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (RCRA 2018), Oxford, UK, 13 July 2018. [Google Scholar]
- Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Mari, F.; Leeners, B. Optimal Personalised Treatment Computation through In Silico Clinical Trials on Patient Digital Twins. Fundam. Inform. 2020, 174, 283–310. [Google Scholar] [CrossRef]
- Guirado, G.; Hérault, T.; Lassaigne, R.; Peyronnet, S. Distribution, Approximation and Probabilistic Model Checking. In Proceedings of the 4th International Workshop on Parallel and Distributed Methods in Verification (PDMC 2005), Lisboa, Portugal, 10 July 2005; Elsevier: Amsterdam, The Netherlands, 2006; Volume 135, pp. 19–30. [Google Scholar] [CrossRef] [Green Version]
Algorithm | HT | E | #Samples Fixed a Priori |
---|---|---|---|
Gauss-SSP | • | yes | |
C.I. | • | yes | |
Chernoff C.I. | • | • | yes |
Chernoff SSP. | • | • | yes |
Chow-Robbins | • | • | no |
SPRT | • | no | |
Bayesian HT | • | no | |
Bayesian E | • | no | |
• | no |
ENVIRONMENT MODEL | SUV MODEL | SPECIFICATION | VERIFICATION TECHNIQUE | |||||
---|---|---|---|---|---|---|---|---|
TOOL | Time | Event Values | Model | Set of States | Property Language | Search Horizon | Inference | #samples Computing |
(P)VeStA [63] | C | fin | CTMC, DTMC / PMaude | fin/inf | CSL, PCTL, QuaTEx | ubnd | HT: Gauss-SSP; E: C.I. | HT and E: a priori |
MultiVeStA [65] | D/C | fin | DES | inf | MultiQuaTEx | ubnd | E: Chow-Robbins | E: at runtime |
Plasma [69] | C | fin/inf | CTMC, MDP | inf | BLTL | bnd | HT: SPRT; E: Chernoff C.I. | HT: at runtime; E: a priori |
APMC [73,97] | D | inf | DTMC, CTMC | fin | LTL | ubnd on monotone LTL | E: Chernoff-SSP/ | E: a priori/at runtime |
PRISM [15,75] | D/C | fin | DTMC, CTMC, MDP | fin | BLTL | ubnd | HT: SPRT; E: Chernoff C.I.; NS | HT: at runtime; E: a priori |
Ymer [77,78] | D/C | inf | DTMC, CTMC | fin | PCTL, CSL | ubnd | HT: SPRT/Gauss-SSP; E: Chow-Robbins/ Chernoff C.I. | HT: at runtime/a priori; E: at runtime/a priori; NS |
UPPAAL-SMC [79] | C | inf | SHA | inf | MITL | bnd | HT: SPRT; E: Chernoff C.I. | HT: at runtime; E: a priori |
COSMOS [30] | C | fin | GSPN | fin | HASL | ubnd | HT: SPRT; E: Chernoff C.I. / Chow-Robbins | HT: at runtime; E: a priori/at runtime |
MRMC [82] | D/C | fin | DTMC, CTMC | fin | PCTL, CSL | ubnd | E: Chow-Robbins; NS | E: at runtime |
SBIP [83] | D/C | inf | DTMC, CTMC, GSMP | inf | PBLTL | bnd | HT: SPRT; E: Chernoff C.I. | HT: at runtime; E: a priori |
MARCIE [85] | C | fin | GSPN | fin | CSL, CSRL, PCTL | ubnd | E: Chernoff C.I.; NS | E: at runtime |
modes [86] | C | fin | SHA, STA, PTA, MDP | fin | MODEST | ubnd | HT: SPRT; E: Chernoff C.I. | HT: at runtime; E: a priori |
APD Analyser [89] | D | fin | Custom model | inf | Safety properties | bnd | E: | E: at runtime |
ViP generator [92,93] | D | fin | ODEs | inf | Boolean properties | bnd | HT: SPRT | HT: at runtime |
Bayesian tools [7,56] | D | fin | DTHS, Uncertain CTMC | inf | BLTL, MTL, MITL | bnd | HT: Bayesian HT; E: Bayesian E | HT and E: at runtime |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappagallo, A.; Massini, A.; Tronci, E. Monte Carlo Based Statistical Model Checking of Cyber-Physical Systems: A Review. Information 2020, 11, 588. https://doi.org/10.3390/info11120588
Pappagallo A, Massini A, Tronci E. Monte Carlo Based Statistical Model Checking of Cyber-Physical Systems: A Review. Information. 2020; 11(12):588. https://doi.org/10.3390/info11120588
Chicago/Turabian StylePappagallo, Angela, Annalisa Massini, and Enrico Tronci. 2020. "Monte Carlo Based Statistical Model Checking of Cyber-Physical Systems: A Review" Information 11, no. 12: 588. https://doi.org/10.3390/info11120588
APA StylePappagallo, A., Massini, A., & Tronci, E. (2020). Monte Carlo Based Statistical Model Checking of Cyber-Physical Systems: A Review. Information, 11(12), 588. https://doi.org/10.3390/info11120588